地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 14-27.DOI: 10.13745/j.esf.sf.2021.7.13
• 俯冲碰撞与岩浆活动、变质作用与成矿系统 • 上一篇 下一篇
高锐1,2,3(), 周卉1, 卢占武2,*(
), 郭晓玉1,*(
), 李文辉2, 王海燕2, 李洪强3, 熊小松3, 黄兴富4, 徐啸1
收稿日期:
2021-05-22
修回日期:
2021-06-28
出版日期:
2022-03-25
发布日期:
2022-03-31
通信作者:
卢占武,郭晓玉
作者简介:
高 锐(1950—),男,教授,博士生导师,中国科学院院士,地球物理学家,主要从事地球物理与深部探测研究。E-mail: gaorui66@mail.sysu.edu.cn
基金资助:
GAO Rui1,2,3(), ZHOU Hui1, LU Zhanwu2,*(
), GUO Xiaoyu1,*(
), LI Wenhui2, WANG Haiyan2, LI Hongqiang3, XIONG Xiaosong3, HUANG Xingfu4, XU Xiao1
Received:
2021-05-22
Revised:
2021-06-28
Online:
2022-03-25
Published:
2022-03-31
Contact:
LU Zhanwu,GUO Xiaoyu
摘要:
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚并生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞以及碰撞如何使大陆变形的过程,是对全球关切的科学奥秘的探索。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。二十多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho面信息的技术瓶颈,揭露了陆-陆碰撞过程。本文在探测研究成果的基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂(而不是龙门山断裂)是扬子板块的西缘边界,高原腹地Moho面厚度薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,不仅沿雅鲁藏布江缝合带走向印度地壳俯冲行为存在东西变化,而且印度地壳向北行进到拉萨地体内部的位置也不同。在缝合带中部,研究显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程中发生物质的回返与构造叠置,这导致印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射以及近于平的Moho面都反映出亚洲板块南缘处于伸展构造环境。
中图分类号:
高锐, 周卉, 卢占武, 郭晓玉, 李文辉, 王海燕, 李洪强, 熊小松, 黄兴富, 徐啸. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2): 14-27.
GAO Rui, ZHOU Hui, LU Zhanwu, GUO Xiaoyu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau[J]. Earth Science Frontiers, 2022, 29(2): 14-27.
图1 青藏高原深地震反射剖面探测工作程度图(截至2019年底) 黄线由INDEPTH项目及中国地震局完成(据文献[10,11,12,13]);红线和黑线由中国地质科学院地质院究所岩石圈团队为主完成(据文献[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46])。1—据文献[14,15];2—据文献[16];3—据文献[17,18,19,20];4—据文献[21,22];5—据文献[23,24];6—据文献[25,26];7—据文献[27,28];8—据文献[29,30];9—据文献[31];10—据文献[32,33,34];11—据文献[35,36];12—据文献[37];13—据文献[38];14—据文献[39];15—据文献[40],此剖面跨越雅鲁藏布江,使用了一次观测完成2段相接剖面技术,故特别用黑线表示;16—据文献[41,42];17—据文献[43];18—据文献[44];19和20—据文献[45,46];21和22—未发表。
Fig.1 Status of deep seismic reflection profiling study in the Qinghai-Tibetan Plateau (as of end of 2019)
图2 INDEPTH-Ⅰ深地震反射剖面发现了印度地壳俯冲在喜马拉雅山下的证据 A—未偏移的深地震反射时间剖面,据文献[10];B—构造解释卡通图。MBT—主边界逆冲断裂;MCT—主中央逆冲断裂;STD—藏南拆离断层;TWT—双程走时;剖面位置见图1。
Fig.2 Evidence of subduction of the Indian continental crust beneath the Himalayas revealed by the INDEPTH-Ⅰ study
图3 北祁连—河西走廊深地震反射剖面(左)和构造解释(右) (据文献[48]修改) 白色三角形—横向连续的强反射轴,代表浅部的沉积地层;红色三角形—一条横向上可以断续追踪的强反射轴,为壳内滑脱层的反射;黑色三角形—中下地壳内短的、近水平的反射轴;绿色三角形—中下地壳内向南倾斜的反射轴;蓝色三角形—强反射的Moho面;蓝色竖线—Moho面转换带;黑色点线—一系列截断主要反射轴的逆冲断层;黑色粗虚线—Moho面;带字母的黄色圆圈—透明反射区;红色实线—北边界逆冲断裂(North Border Thrust,NBT),据文献[19,20],阿拉善地块地壳沿NBT向祁连山下俯冲;剖面位置见图1中3号剖面。
Fig.3 Deep seismic reflection profile (left) in the North Qilian-Hexi corridor and its tectonic interpretation(right). Modified after [48].
图4 西昆仑—塔里木深地震反射剖面(左)和面对面构造模型解释(右) (据文献[15]修改) A—偏移时间剖面,2015年再处理;纵坐标为双程时间(s),横向为CDP编号,间距25 m;蓝色虚线描述了主要震相,显示出6 s之下西昆仑下地壳与塔里木下地壳发生面对面汇聚。B—西昆仑的下地壳是俯冲印度板块下地壳的延伸,与塔里木发生碰撞。C—西昆仑的下地壳是俯冲印度板块下地壳断离回返部分,形成新的叠置的Moho面,与塔里木碰撞(剖面位置见图1的1号剖面)。
Fig.4 Deep seismic reflection profile (left) in the West Kunlun and Tarim and its interpretation according to the face-to-face tectonic model (right). Modified after 15.
图5 龙门山深地震反射剖面(若尔盖盆地—四川盆地)(图1中12号剖面) SGT—松潘甘孜地体;YB—扬子地块;LRQF—龙日曲断裂(龙日坝断裂带的右支);PGF—彭冠断裂;MJF—岷江断裂;WMF—汶川—茂文断裂;BCF—北川断裂。反射剖面显示:扬子下地壳自四川盆地穿越龙门山向西被龙日坝断裂带截切,如图b;汶川—茂文断裂为一花状走滑构造,向下延伸切穿Moho面,如图c。
Fig.5 Deep seismic reflection section in Longmenshan (Zoegay Basin-Sichuan Basin, location see Fig.1)
图6 青藏高原腹地(拉萨地体北—BNS—羌塘地体)深地震反射剖面(图1中8号剖面) a—反射剖面线条图,纵坐标为双程走时,横坐标为纬度; b—a图左下角黑框内班公湖—怒江缝合带Moho面的局部放大地震图像。BNS代表班公湖—怒江缝合带;缝合带南侧拉萨地体最北部Moho面出现在24 s,缝合带北侧羌塘地体的Moho面出现在22 s,Moho面在缝合带南北两侧存在2 s的错断;越过BNS缝合带进入羌塘地体内部的Moho面抬升到20~21 s,近水平展布。
Fig.6 Deep seismic reflection profile in the central Tibetan plateau (North Lhasa terrain-BNS-Qiangtang terrain, location see section 8 in Fig.1)
图7 横过昆仑断裂的深地震反射剖面(见图1中5号剖面) (据文献[69]) a—未解释的深反射剖面线条图,跨越若尔盖盆地—西秦岭造山带—临夏盆地,全长260 km(据文献[69]);b—昆仑断裂部分的解释。图a中的黑框—昆仑断裂部分;图b的纵坐标—右为双程走时,左为参考深度,以地壳平均速度6.00 km/s估算;UD,MD,LD—上拆离断层、中拆离断层、下拆离断层。
Fig.7 Deep seismic reflection profile across the Kunlun fault (location see section 5 in Fig.1). Adapted from 69.
图8 横过雅鲁藏布江缝合带深地震反射剖面大炮单次剖面线条图(a)及特提斯喜马拉雅—雅鲁藏布江缝合带—冈底斯岩基的深地震反射剖面线条图与解释(b) 图a为谢通门西剖面2个大炮(编号102482和104282,每个药量2000 kg)单炮数据衔接剖面,剖面位置见图1中的15号剖面(黑色段,据文献[65])。纵坐标为双程走时,向下延伸至30 s(深度94.50 km,按地壳平均速度6.30 km/s估算,据文献[76]。横坐标按CDP排列方式标出了两个大炮位置。图中显示印度地壳已经俯冲带到冈底斯之下,与亚洲地壳碰撞,两个大陆地幔缝合。解释见正文。图b是谢通门西剖面大中小炮全部数据的叠加剖面线条图,黑色线是素描线,蓝色线是用于解释的框架线。横坐标使用距离(km)表示,以剖面南端起算全长105 km。在图a和图b中都示意标出雅鲁藏布江缝合带和冈底斯岩基的位置。2个大炮位置用红五星表示,102482炮位于雅鲁藏布江缝合带南界10 km,特提斯喜马拉雅构造带内。104282炮位于雅鲁藏布江缝合带北界35 km,已经进入冈底斯岩基内部。
Fig.8 (a) Single shot gather for deep seismic reflection profile across the Yarlung Zangbo suture zone and (b) short gather for and interpretation of deep seismic reflection profile in the Tethys Himalaya-Yarlungzangbo suture-Gangdise batholith
[1] | ARGAND E. La Tectonique de l’ Asie[C]// Proceedings of the 13th International Geological Congress, Brussels. 1924, 7:171-372. |
[2] | 尹安. 喜马拉雅—青藏高原造山带地质演化: 显生宙亚洲大陆生长[J]. 地球学报, 2001, 22(3):193-230. |
[3] | JOHN K. Scientists to get INDEPTH look at crust beneath the Himalayas[EB/OL]. (1994-03-31)[2021-05-04]. Stanford University News Service, http://news.stanford.edu/pr/94/940331Arc4355.html |
[4] |
QIU J. China’s exquisite look at Earth’s rocky husk wins raves[J]. Science, 2013, 341(6141):20.
DOI URL |
[5] | 王海燕, 高锐, 卢占武, 等. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 2010, 84(6):818-839. |
[6] |
MEISSNER R, BROWN L. Seismic reflections from the Earth’s crust: comparative studies of tectonic patterns[J]. Geophysical Journal International, 1991, 105(1):1-2.
DOI URL |
[7] |
CLOWES R M. Initiation, development, and benefits of lithoprobe: shaping the direction of Earth science research in Canada and beyond[J]. Canadian Journal of Earth Sciences, 2010, 47(4):291-314.
DOI URL |
[8] |
HAMMER P T C, CLOWES R M, COOK F A, et al. The Lithoprobe trans-continental lithospheric cross sections:imaging the internal structure of the North American continent[J]. Canadian Journal of Earth Sciences, 2010, 47:821-857.
DOI URL |
[9] | 曾融生, 阚荣举. 柴达木盆地西部地壳深界面的反射波[J]. 地球物理学报, 1961, 4(2):120-125. |
[10] |
ZHAO W J, NELSON K D, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455):557-559.
DOI URL |
[11] |
NELSON K D, ZHAO W, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synjournal of project INDEPTH results[J]. Science, 1996, 274(5293):1684-1688.
DOI URL |
[12] |
ROSS A R, BROWN L D, PANANONT P, et al. Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow[J]. Geophysical Journal International, 2004, 156(1):115-128.
DOI URL |
[13] | 酆少英, 高锐, 龙长兴, 等. 银川地堑地壳挤压应力场:深地震反射剖面[J]. 地球物理学报, 2011, 54(3):692-697. |
[14] | GAO R, LI D X, LU D Y, et al. Deep seismic reflection profiles across contact zone of West Kunlun and Tarim Basin along the Xinjiang Geotransect in NW China[J]. Terra Nostra, 1999, 99(2):49-50. |
[15] |
GAO R, HUANG D D, LU D Y, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chinese Science Bulletin, 2000, 45(24):2281-2286.
DOI URL |
[16] | GAO R, LI P W, LI Q S, et al. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau: revelation from investigation of the deep seismic profiles[J]. Science in China Series D: Earth Sciences, 2001, 44(Suppl 1):71-78. |
[17] | 吴宣志, 吴春玲, 卢杰, 等. 利用深地震反射剖面研究北祁连—河西走廊地壳细结构[J]. 地球物理学报, 1995, 38(增刊2):29-35. |
[18] | GAO R, WU G J. Lithosphere structure and geodynamics model of Golmud-Ejin geoscience transect in North Tibet[J]. Acta Geoscientic Sinica Bulletin of the CAGS, 1996 (Special Issue):36-40. |
[19] | GAO R. Lithospheric structure and geodynamic model of the Golmud-Ejin transect in the northern Tibet[J]. Special Paper of the Geological Society of America, 1999, 328:9-17. |
[20] | 高锐, 李廷栋, 吴功建. 青藏高原岩石圈演化与地球动力学过程:亚东—格尔木—额济纳旗地学断面的启示[J]. 地质论评, 1998, 44(4):389-395. |
[21] | 卢占武, 高锐, 薛爱民, 等. 羌塘盆地石油地震反射新剖面及基底构造浅析[J]. 中国地质, 2006, 33(2):286-290. |
[22] | 卢占武, 高锐, 李秋生, 等. 横过青藏高原羌塘地体中央隆起区的深反射地震试验剖面[J]. 地球物理学报, 2009, 52(8):2008-2014. |
[23] | 高锐, 王海燕, 马永生, 等. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系:深地震反射剖面探测成果[J]. 地球学报, 2006, 27(5):411-418. |
[24] | 王海燕, 高锐, 马永生, 等. 若尔盖与西秦岭地震反射岩石圈结构和盆山耦合[J]. 地球物理学报, 2007, 50(2):472-481. |
[25] | 李秋生, 高锐, 王海燕, 等. 川东北—大巴山盆山体系岩石圈结构及浅深变形耦合[J]. 岩石学报, 2011, 27(3):612-620. |
[26] |
DONG S W, GAO R, YIN A, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China[J]. Geology, 2013, 41(6):671-674.
DOI URL |
[27] | 侯贺晟, 高锐, 贺日政, 等. 西南天山—塔里木盆地结合带浅深构造关系: 深地震反射剖面的初步揭露[J]. 地球物理学报, 2012, 55(12):4116-4125. |
[28] |
GAO R, HOU H, CAI X, et al. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China[J]. Lithosphere, 2013, 5(4):382-392.
DOI URL |
[29] |
GAO R, CHEN C, LU Z W, et al. New constraints on crustal structure and Moho topography in Central Tibet revealed by Sinoprobe deep seismic reflection profiling[J]. Tectonophysics, 2013, 606:160-170.
DOI URL |
[30] |
LU Z W, GAO R, LI Y T, et al. The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data[J]. Tectonophysics, 2013, 606:171-177.
DOI URL |
[31] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7):555-560.
DOI URL |
[32] |
WANG C S, GAO R, YIN A, et al. A mid-crustal strain-transfer model for continental deformation: a new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth and Planetary Science Letters, 2011, 306(3/4):279-288.
DOI URL |
[33] | 王海燕, 高锐, 尹安, 等. 深地震反射剖面揭示的海原断裂带深部几何形态与地壳形变[J]. 地球物理学报, 2012, 55(12):3902-3909. |
[34] |
GAO R, WANG H, YIN A, et al. Tectonic development of the northeastern Tibetan Plateau as constrained by high-resolution deep seismic-reflection data[J]. Lithosphere, 2013, 5(6):555-574.
DOI URL |
[35] |
GAO R, CHEN C, WANG H Y, et al. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin[J]. Earth and Planetary Science Letters, 2016, 454:86-91.
DOI URL |
[36] | 王海燕, 高锐, 卢占武, 等. 四川盆地深部地壳结构:深地震反射剖面探测[J]. 地球物理学报, 2017, 60(8):2913-2923. |
[37] |
GUO X Y, GAO R, RANDY KELLER G, et al. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 2013, 379:72-80.
DOI URL |
[38] | 郭晓玉, 高锐, 高建荣, 等. 综合数据分析青藏高原东北缘六盘山地区构造形变及其构造成因独特性探讨[J]. 地球物理学报, 2017, 60(6):2058-2067. |
[39] |
XU X, GAO R, GUO X Y, et al. Outlining tectonic inheritance and construction of the Min Shan region, eastern Tibet, using crustal geometry[J]. Scientific Reports, 2017, 7:13798.
DOI URL |
[40] |
GUO X Y, LI W H, GAO R, et al. Nonuniform subduction of the Indian crust beneath the Himalayas[J]. Scientific Reports, 2017, 7:12497.
DOI URL |
[41] | SHI Z X, LI H Q, LI W H, et al. Flat Moho discontinuity beneath the Lhasa Terrane:revealed by large dynamite shots data[C]// Proceedings of AGU Fall Meeting. San Francisco, 2019: T23E-0488. |
[42] | 李文辉, 卢占武, 高锐, 等. 深地震反射数据揭示拉萨地体地壳内部精细结构[C]// 中国地球科学联合学术年会专题五: 陆陆碰撞带深部结构和动力学意义. 北京, 2019: 153. |
[43] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780:228395.
DOI URL |
[44] | 酆少英, 李秋生, 邓小娟, 等. 深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J]. 地球物理学报, 2020, 63(3):828-839. |
[45] | 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5):995-1020. |
[46] | 熊小松, 高锐, 酆少英, 等. 榆木山构造带深部结构及隆升成因[J]. 中国地质, 2019, 46(5):1039-1051. |
[47] |
GAO R, LU Z W, LI Q S, et al. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau[J]. Episodes, 2005, 28(4):263-273.
DOI URL |
[48] | 黄兴富, 高锐, 郭晓玉, 等. 青藏高原东北缘祁连山与酒西盆地结合部深部地壳结构及其构造意义[J]. 地球物理学报, 2018, 61(9):3640-3650. |
[49] | 高锐, 成湘洲, 丁谦. 格尔木—额济纳旗地学断面地球动力学模型初探[J]. 地球物理学报, 1995, 38(增刊2):3-14. |
[50] |
JIMÉNEZ-MUNT I, FERNÀNDEZ M, VERGÉS J, et al. Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies[J]. Earth and Planetary Science Letters, 2008, 267(1/2):276-289.
DOI URL |
[51] |
WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic:a review[J]. Tectonophysics, 2014, 621:1-43.
DOI URL |
[52] |
YE Z, GAO R, LI Q S, et al. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426:109-117.
DOI URL |
[53] | MEYER B, LE FORT P. The France research results and prospects for the modern tectonics of Tibet-Karakoram[M]// LE FORT P. France Earth sciences research in Himalaya region. Kathmandu: Nepal French Federation, 1994: 97-101. |
[54] |
LYON-CAEN H, MOLNAR P. Gravity anomalies and the structure of western Tibet and the Southern Tarim Basin[J]. Geophysical Research Letters, 1984, 11(12):1251-1254.
DOI URL |
[55] |
KAO H, GAO R, RAU R J, et al. Seismic image of the Tarim Basin and its collision with Tibet[J]. Geology, 2001, 29(7):575-578.
DOI URL |
[56] |
GUO X Y, GAO R, XU X, et al. Longriba fault zone in eastern Tibet:an important tectonic boundary marking the westernmost edge of the Yangtze block[J]. Tectonics, 2015, 34(5):970-985.
DOI URL |
[57] | 郭晓玉, 高锐, KELLER G R, 等. 龙门山断裂带隆起造山独特性探讨[J]. 地质科学, 2014, 49(4):1337-1345. |
[58] | JIN Y, MCNUTT M K, ZHU Y S. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B5):11275-11290. |
[59] | GAO R, LU Z W, XIONG X S, et al. SINOPROBE deep seismic reflection profiling across the Bangong-Nujiang Suture, Central Tibet[C]// Proceedings of the 25th Himalaya-Karakoram-Tibet Workshop.San Francisco: US Geological Survey, 2010: 2010-1099. |
[60] |
HIRN A, NERCESSIAN A, SAPIN M, et al. Lhasa block and bordering sutures: a continuation of a 500-km Moho traverse through Tibet[J]. Nature, 1984, 307(5946):25-27.
DOI URL |
[61] |
ZENG R S, DING Z F, WU Q J. A review on the lithospheric structures in the Tibetan Plateau and constraints for dynamics[J]. Pure and Applied Geophysics PAGEOPH, 1995, 145(3/4):425-443.
DOI URL |
[62] |
LU Z W, GAO R, LI H Q, et al. Variation of Moho depth across bangong-nujiang suture in central Tibet: results from deep seismic reflection data[J]. International Journal of Geosciences, 2015, 6(8):821-830.
DOI URL |
[63] |
LU Z W, GAO R, LI H Q, et al. Large explosive shot gathers along the SinoProbe deep seismic reflection profile and Moho depth beneath the Qiangtang terrane in central Tibet[J]. Episodes, 2015, 38(3):169-178.
DOI URL |
[64] |
MEISSNER R, TILMANN F, HAINES S. About the lithospheric structure of central Tibet, based on seismic data from the INDEPTH III profile[J]. Tectonophysics, 2004, 380(1/2):1-25.
DOI URL |
[65] |
GUO X Y, GAO R, ZHAO J M, et al. Deep seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185:751-762.
DOI URL |
[66] |
VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)[J]. Geology, 1998, 26(8):695-698.
DOI URL |
[67] | 张洪双, 滕吉文, 田小波, 等. 青藏高原东北缘岩石圈厚度与上地幔各向异性[J]. 地球物理学报, 2013, 56(2):459-471. |
[68] |
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706.
DOI URL |
[69] | 高锐, 王海燕, 王成善, 等. 青藏高原东北缘岩石圈缩短变形:深地震反射剖面再处理提供的证据[J]. 地球学报, 2011, 32(5):513-520. |
[70] | 王成善, 夏代祥, 周详, 等. 雅鲁藏布江缝合带—喜马拉雅山地质[M]. 北京: 地质出版社, 1999. |
[71] |
ALSDORF D, BROWN L, NELSON K D, et al. Crustal deformation of the Lhasa terrane, Tibet Plateau from Project INDEPTH deep seismic reflection profiles[J]. Tectonics, 1998, 17(4):501-519.
DOI URL |
[72] |
MAKOVSKY Y, KLEMPERER S L, RATSCHBACHER L, et al. Midcrustal reflector on INDEPTH wide-angle profiles: an ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 1999, 18(5):793-808.
DOI URL |
[73] |
NABELEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the hi-CLIMB experiment[J]. Science, 2009, 325(5946):1371-1374.
DOI URL |
[74] |
SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414:6-15.
DOI URL |
[75] |
LI H Q, GAO R, LI W H, et al. The Moho structure beneath the Yarlung Zangbo Suture and its implications: evidence from large dynamite shots[J]. Tectonophysics, 2018, 747/748:390-401.
DOI URL |
[76] |
ZHAO W, MECHIE J, BROWN L D, et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data[J]. Geophysical Journal International, 2001, 145(2):486-498.
DOI URL |
[77] |
BROWN L D, ZHAO W, NELSON K D, et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 1996, 274(5293):1688-1690.
DOI URL |
[78] | 卢占武, 高锐, 王海燕, 等. 深地震反射剖面上的“亮点”构造[J]. 地球物理学进展, 2014, 29(6):2518-2525. |
[79] | 高锐. 青藏高原岩石圈的变形与陆壳运动[C]// 1990年中国地球物理学会第六届学术年会论文集. 武汉, 1990: 142. |
[80] | 齐蕊, 高锐, 廖杰. 壳内解耦对大陆拆沉、俯冲的影响作用:二维动力学数值模拟[G]//岩石圈探测与地球动力学论文集. 广州: 中山大学出版社, 2021:333-342. |
[81] |
BARAZANGI M, NI J. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet[J]. Geology, 1982, 10(4):179-185.
DOI URL |
[82] |
CHEN Y, LI W, YUAN X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413:13-24.
DOI URL |
[83] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110:1541-1575.
DOI URL |
[84] |
TAPPONNIER P, MEYER B, AVOUAC J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97(3/4):382-403.
DOI URL |
[85] |
SHEN X Z, LI Y K, GAO R, et al. Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere:results from a dense seismic profile[J]. Gondwana Research, 2020, 87:238-247.
DOI URL |
[86] |
HUANG X F, GAO R, LI W H, et al. Seismic reflection evidence of crustal duplexing and lithospheric underthrusting beneath the Western Qilian Mountains, northeastern margin of the Tibetan Plateau[J]. Science China: Earth Sciences, 2021, 64(1):96-109.
DOI URL |
[87] | 陈宣华, 邵兆刚, 熊小松, 等. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J]. 地球学报, 2019, 40(3):377-392. |
[1] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
[2] | 付顺, 赵应权, 王进军, 余瑜, 朱迎堂, 傅星喆. 白垩纪羌塘地体西南缘的陆-陆碰撞:来自班怒带西段的花岗岩约束[J]. 地学前缘, 2022, 29(2): 416-430. |
[3] | 卢占武, 高锐, Simon KLEMPERER, 王海燕, 董树文, 李文辉, 李洪强. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217. |
[4] | 石康兴, 王长明, 杜斌, 陈奇, 祝佳萱, 饶世成, 段泓羽. 华北克拉通东南缘1.90~1.80 Ga陆-陆碰撞作用:来自胶北地体花岗-绿岩带的证据[J]. 地学前缘, 2021, 28(6): 295-317. |
[5] | GAO Rui, ZHOU Hui, GUO Xiaoyu, LU Zhanwu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2021, 28(5): 320-336. |
[6] | 吕庆田, 孟贵祥, 严加永, 张昆, 龚雪婧, 高凤霞. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 2020, 27(2): 232-253. |
[7] | 莫宣学. 大型-超大型矿床成矿地球动力学背景[J]. 地学前缘, 2020, 27(2): 13-19. |
[8] | 赵志丹,刘栋,王青,朱弟成,董国臣,周肃,莫宣学. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135. |
[9] | 邓晋福,刘翠,狄永军,冯艳芳,苏尚国,肖庆辉,赵国春,戴蒙,段培新. 地壳对接消减带和叠接消减带与陆-陆碰撞造山和俯冲增生造山:来自侵入岩构造组合的记录[J]. 地学前缘, 2016, 23(6): 34-41. |
[10] | 丁振信, 薛春纪, 赵晓波, 闫永红, 亚夏尔·亚力坤, 冯博, 罗晖, 俎波, 张祺, 代志杰. 新疆阿吾拉勒西段流纹岩及其对该区岩石圈深部过程的约束[J]. 地学前缘, 2014, 21(5): 196-210. |
[11] | 董树文, 李廷栋, 陈宣华, 高锐, 吕庆田, 石耀霖, 黄大年, 杨经绥. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||