地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 291-302.DOI: 10.13745/j.esf.sf.2025.4.67
收稿日期:
2025-04-25
修回日期:
2025-05-27
出版日期:
2025-07-25
发布日期:
2025-08-04
通信作者:
*成秋明(1960—),男,教授,博士生导师,中国科学院院士,主要从事数学地球科学、矿产普查与勘探领域的研究。E-mail: 作者简介:
李金明(1998—),男,硕士研究生,主要从事数学地球科学领域的研究。E-mail: lijm227@mail2.sysu.edu.cn
基金资助:
LI Jinming1(), ZHENG Yang1, CHENG Qiuming1,2,*(
)
Received:
2025-04-25
Revised:
2025-05-27
Online:
2025-07-25
Published:
2025-08-04
摘要:
地温梯度作为表征岩石圈热状态的关键参数,其空间分布研究对于理解克拉通热结构演化机制和指导地热资源勘探具有重要意义。传统华北克拉通地温梯度研究多限于一维平面分布特征,未能充分揭示其垂向分异规律,导致预测模型精度受限。本研究创新性地构建了华北克拉通地温梯度深度分层预测模型,系统地阐明其深度依赖模式和热构造控制因素。基于全球热流数据库及前人研究成果,本研究整合了573个具有实测深度信息的地温梯度数据点,将其划分为6个深度段:<500 m,500~1 000 m,1 000~2 000 m,2 000~3 000 m,3 000~4 000 m,>4 000 m。选取居里面深度、大地热流值等13项地质-地球物理特征参数用来训练不同深度段的机器学习回归模型。研究显示:(1)模型预测性能具有显著深度依赖性,中浅部(0~3 000 m)R2>0.45,而深部因样本量减少精度下降;(2)特征重要性分析表明居里面深度与大地热流值对深部预测贡献显著(权重>40%),而磁异常和地质年代等影响较弱(<10%);(3)地温梯度三维分布呈现规律性垂向变化,即浅层高值区(>35 ℃/km)沿活动断裂带分布,中深层(500~3 000 m)高值带自西向东迁移,与太平洋板块俯冲引起的地壳减薄区具有空间耦合性。本研究首次尝试了华北克拉通地温梯度的三维建模,其成果不仅为区域地热资源评估提供了数据支撑,更为理解克拉通破坏过程中的热-构造耦合机制提供了新的观测约束。提出的深度分层建模方法为类似构造单元的热状态研究提供了范式参考。
中图分类号:
李金明, 张杨, 成秋明. 基于机器学习与垂向分层建模联合驱动的华北克拉通地温梯度空间分布预测[J]. 地学前缘, 2025, 32(4): 291-302.
LI Jinming, ZHENG Yang, CHENG Qiuming. Spatial distribution prediction of geothermal gradient in North China Craton driven by the combination of machine learning and stratification modeling[J]. Earth Science Frontiers, 2025, 32(4): 291-302.
图1 研究区样本点分布(研究区华北克拉通边界(黑线)数据来源于潘桂棠等[6];红星表示的钻孔井位的数据来源于中国大陆科学钻探项目[7]) 背景图为数字地形图,使用GMT6制作[5]。
Fig.1 Distribution of sample points in the study area. The background map is the digital topographic map made with GMT6[5], the boundary of the North China Craton (black line) indicates the study area (data from [6]), and the red star indicates a drill hole (data from [7]).
分组 | 深度/m | 样本数量/个 | 占比 |
---|---|---|---|
A | 0~<500 | 256 | 44.68% |
B | 500~<1 000 | 231 | 40.31% |
C | 1 000~<2 000 | 208 | 36.30% |
D | 2 000~<3 000 | 150 | 26.18% |
E | 3 000~4 000 | 81 | 14.14% |
F | >4 000 | 22 | 3.84% |
表1 不同深度层段地热梯度样本数据统计结果
Table 1 Statistical results of thermal gradient sample data in different depth segments
分组 | 深度/m | 样本数量/个 | 占比 |
---|---|---|---|
A | 0~<500 | 256 | 44.68% |
B | 500~<1 000 | 231 | 40.31% |
C | 1 000~<2 000 | 208 | 36.30% |
D | 2 000~<3 000 | 150 | 26.18% |
E | 3 000~4 000 | 81 | 14.14% |
F | >4 000 | 22 | 3.84% |
图2 各深度层段地热梯度值的直方图 红线为正态分布曲线。
Fig.2 Histogram of thermal gradient values for each depth segments. The red line represents the normal distribution curve.
编号 | 特征名称 | 数据来源 |
---|---|---|
1 | 地质年代 | [ |
2 | 磁异常 | [ |
3 | 地壳厚度 | [ |
4 | 结晶壳厚度 | [ |
5 | 沉积物厚度 | [ |
6 | 岩石圈厚度 | [ |
7 | 均衡重力异常 | [ |
8 | 布格重力异常 | [ |
9 | 地形 | [ |
10 | 自由空气重力异常 | [ |
11 | 居里点深度 | [ |
12 | 距火山距离 | [ |
13 | 大地热流 | [ |
表2 地质与地球物理特征及其数据来源
Table 2 Geological and geophysical features used in the study and data sources
编号 | 特征名称 | 数据来源 |
---|---|---|
1 | 地质年代 | [ |
2 | 磁异常 | [ |
3 | 地壳厚度 | [ |
4 | 结晶壳厚度 | [ |
5 | 沉积物厚度 | [ |
6 | 岩石圈厚度 | [ |
7 | 均衡重力异常 | [ |
8 | 布格重力异常 | [ |
9 | 地形 | [ |
10 | 自由空气重力异常 | [ |
11 | 居里点深度 | [ |
12 | 距火山距离 | [ |
13 | 大地热流 | [ |
图3 不同深度段所对应最佳算法模型的评价指标统计图
Fig.3 Statistical chart of the performance evaluation standard value of the optimal algorithm model corresponding to different depth Segments A: 0~<500 m; B: 500~<1 000 m; C: 1 000~<2 000 m; D: 2 000~<3 000 m; E: 3 000~4 000 m; F: >4 000 m。
图4 实际测量值与预测值散点图 蓝点为各深度段所有的观测值,红线为最小二乘法拟合的直线,浅红色条带为95%的置信区间。
Fig.4 Scatter plot of actual measured value and predicted values. The blue dots represent all the observed values of each depth segments, the red line is the straight line fitted by the least square method, and the light red band is the 95% confidence interval.
图5 各深度层段特征重要性排序统计折线图 a—不同深度的大地热流与居里点深度特征重要性变化;b—不同深度的沉积物厚度、结晶地壳厚度和地壳厚度特征重要性变化;c—不同深度地壳厚度与均衡重力异常特征重要性变化;d—不同深度的布格重力异常和自由空气重力异常特征重要性变化;e—不同深度岩石圈厚度与地形特征重要性变化;f—不同深度均衡重力异常与到火山的距离特征重要性变化。A: 0~<500 m;B: 500~<1 000 m;C: 1 000~<2 000 m;D: 2 000~<3 000 m;E: 3 000~4 000 m;F: >4 000 m。
Fig.5 Statistical line chart of feature importance ranking of each depth segment. a—the variations in the importance of geothermal heat flow and Curie point depth features at different depths; b—the variations in the importance of sediment thickness, crystalline crust thickness and crustal thickness features at different depths; c—the variations in the importance of crustal thickness and isostatic gravity anomaly features at different depths; d—the variations in the importance of bouguer gravity anomaly and free air gravity anomaly features at different depths; e—the variations in the importance of the thickness of lithosphere and topography features at different depths; f—the variations in the importance of isostatic gravity anomaly and the distance to volcano features at different depths.
图6 6个深度段的预测地热梯度分布图(研究区华北克拉通边界(黑线)数据来源于潘桂棠等[6]) 图中背景为制图软件ArcGis pro中的山体阴影。
Fig.6 Predicted geothermal gradient distribution maps of six depth segments. The boundary of the North China Craton (black line) indicates the study area (data from [6]), and the background is the mountain shadow in the mapping software ArcGis pro.
图7 活动断裂与0~500 m地热梯度分布(研究区华北克拉通边界(黑线)数据来源于潘桂棠等[6];红线为活动断裂分布数据来源于Styron和Pagani[48]) 图中背景为制图软件ArcGis pro中的山体阴影。
Fig.7 Active faults and 0-500 m geothermal gradient distribution. The boundary of the North China Craton (black line) indicates the study area (data from [6]), the background is the mountain shadow in the mapping software ArcGis pro, and the red line represents the distribution of active faults (data from [48]).
图8 CCSD-1井温与预测温度曲线(数据来源于中国大陆科学钻探项目[7]) 图中黑线为钻井温度曲线,蓝线为井温达到稳定后的井温曲线,红线为本研究预测地热梯度计算得出的该点位地温-深度变化曲线。井位如图1所示。
Fig.8 Comparison of measured temperature and predicted temperature curves for the CCSD-1 well (data from CCSDP). The well location is shown in Fig.1. The black line represents the drilling temperature curve, the blue line represents the well temperature curve after the well temperature reaches stability, and the red line represents the temperature-depth variation curve at this point calculated by predicting the geothermal gradient in this study.
[1] | 袁玉松, 米立军, 张功成, 等. 沉积盆地地温梯度研究中应注意的问题[J]. 地质论评, 2009, 55(4): 531-535. |
[2] |
LUCAZEAU F. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8): 4001-4024.
DOI |
[3] | SCLATER J G, HASTEROK D, GOUTORBE B, et al. Marine heat flow[M]// HARFFJ, MESCHEDEM, PETERSENS, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2014: 1-16. |
[4] |
何丽娟, 汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语, 2021, 23(3): 3-9.
DOI |
[5] |
WESSEL P, LUIS J F, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
DOI |
[6] | 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-16. |
[7] | WANG D, ZHANG W, ZHANG X, et al. Casing and well cementation[M]// WANGD, ZHANGW, ZHANGX, et al. The China continental scientific drilling project:CCSD-1 Well drilling engineering and construction. Berlin, Heidelberg: Springer, 2015: 303-331. |
[8] | CARLSON R W, PEARSON D G, JAMES D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1): RG1001. |
[9] | 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、 范围与机制[J]. 中国科学: 地球科学, 2011, 41(5): 583-592. |
[10] | HU S, HE L, WANG J. Heat flow in the continental area of China: a new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. |
[11] | JIANG G, HU S, SHI Y, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48. |
[12] | ZHANG Y, CHENG Q, HONG T, et al. Ocean singularity analysis and global heat flow prediction reveal anomalous bathymetry and heat flow[J]. Geoscience Frontiers, 2025, 16(3): 102013. |
[13] | 王亚茹, 蔺文静, 朱传庆, 等. 基于地质年代与热流关系的中国陆区热流分布[J]. 地球科学, 2025, 50(2): 763-781. |
[14] | SHAHDI A, LEE S, KARPATNE A, et al. Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States[J]. Geothermal Energy, 2021, 9(1): 18. |
[15] | MEJÍA-FRAGOSO J C, FLÓREZ M A, BERNAL-OLAYA R. Predicting the geothermal gradient in Colombia: a machine learning approach[J]. Geothermics, 2024, 122: 103074. |
[16] | 江晓雪, 朱传庆. 复杂热传递作用下冀中坳陷深、 浅部地热资源差异分布[J/OL]. 地球科学, (2024-04-10)[2024-09-18]. https://link.cnki.net/urlid/42.1874.P.20240408.1659.025. |
[17] | QIU N, ZUO Y, ZHOU X, et al. Geothermal regime of the Bohai offshore area, Bohai Bay Basin, North China[J]. Energy Exploration & Exploitation, 2010, 28(5): 327-350. |
[18] | WANG X, MAO X, MAO X, et al. Characteristics and classification of the geothermal gradient in the Beijing-Tianjin-Hebei Plain, China[J]. Mathematical Geosciences, 2020, 52(6): 783-800. |
[19] | HE J, LI K, WANG X, et al. A machine learning methodology for predicting geothermal heat flow in the Bohai Bay Basin, China[J]. Natural Resources Research, 2022, 31(1): 237-260. |
[20] | 陈国雄, 张越鹏, 罗磊, 等. 数据驱动斑岩型矿床时空预测模型[J]. 地学前缘, 2025, 32(4): 46-59. |
[21] |
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
DOI |
[22] | BELL G, HEY T, SZALAY A. Beyond the data deluge[J]. Science, 2009, 323(5919): 1297-1298. |
[23] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
[24] | 张汝惠, 赵国泽. 河北邢束地区地壳上地幔的热作用[J]. 中国地震, 1993(3): 45-55. |
[25] |
常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3): 1003-1016.
DOI |
[26] | Global Heat Flow Data Assessment Group. The global heat flow database: release 2024[DB/OL]. (2024-04-17)[2024-07-01]. https://doi.org/10.5880/fidgeo.2024.014. |
[27] | QUINTERO W, CAMPOS-ENRÍQUEZ O, HERNÁNDEZ O. Curie point depth, thermal gradient, and heat flow in the Colombian Caribbean (northwestern South America)[J]. Geothermal Energy, 2019, 7(1): 16. |
[28] | STEINSHOUER D W, QIANG J, MCCABE P J, et al. Maps showing geology, oil and gas fields, and geologic provinces of the Asia Pacific region[R]. Reston: U.S. Geological Survey, 1999. |
[29] | DYMENT J, CHOI Y, LESUR V, et al. The world digital magnetic anomaly map: version 2.1[C]// Proceedings of the 22nd EGU general assembly. Vienna: EGU, 2020: 22098. |
[30] | MOONEY W D, BARRERA-LOPEZ C, SUÁREZ M G, et al. Earth crustal model 1 (ECM1): a 1° x 1° global seismic and density model[J]. Earth-Science Reviews, 2023, 243: 104493. |
[31] | HOGGARD M J, CZARNOTA K, RICHARDS F D, et al. Global distribution of sediment-hosted metals controlled by craton edge stability[J]. Nature Geoscience, 2020, 13(7): 504-510. |
[32] | BALMINO G, VALES N, BONVALOT S, et al. Spherical harmonic modelling to ultra-high degree of bouguer and isostatic anomalies[J]. Journal of Geodesy, 2012, 86(7): 499-520. |
[33] |
TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
DOI |
[34] | SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67. |
[35] | LI C, LU Y, WANG J. A global reference model of curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7(1): 45129. |
[36] | PROGRAM VOLCANISM PROGRAM. Volcanoes of the world[DB/OL]. (2024-06-06)[2024-07-01]. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2. |
[37] |
王子烨, 左仁广. 基于多源数据融合的喜马拉雅淡色花岗岩识别[J]. 地学前缘, 2023, 30(5): 216-226.
DOI |
[38] | ARTEMIEVA I, MOONEY W. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research: Solid Earth, 2001, 106: 16387-16414. |
[39] | DRAPER N R, SMITH H. Applied regression analysis[M]. 3rd ed. Hoboken: John Wiley & Sons, Inc., 1998. |
[40] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[41] | BOUKERCHE A, TAO Y, SUN P. Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems[J]. Computer Networks, 2020, 182: 107484. |
[42] | KRZYWINSKI M, ALTMAN N. Classification and regression trees[J]. Nature Methods, 2017, 14(8): 757-758. |
[43] |
SEEGER M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106.
PMID |
[44] | KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]// Proceedings of the 14th international joint conference on artificial intelligence: volume 2. Montreal: Morgan Kaufmann Publishers Inc, 1995: 1137-1143. |
[45] | DERBELA M, NOUIRI I. Intelligent approach to predict future groundwater level based on artificial neural networks (ANN)[J]. Euro-Mediterranean Journal for Environmental Integration, 2020, 5(3): 51. |
[46] | LÖSING M, EBBING J. Predicting geothermal heat flow in antarctica with a machine learning approach[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021499. |
[47] |
成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14.
DOI |
[48] | STYRON R, PAGANI M. The GEM global active faults database[J]. Earthquake Spectra, 2020, 36: 875529302094418. |
[49] | 马刚, 常恩祥, 周瑞良, 等. 华北平原北部地温场特征及其形成条件的初步探讨[J]. 中国地质科学院562综合大队集刊, 1983: 109-126. |
[50] | 李彤霞, 王岩, 郭晓燕, 等. 郯庐地震带分段特征与小震序列活动分析[J]. 防灾减灾学报, 2017, 33(2): 78-84. |
[51] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. |
[52] | 许天福, 文冬光, 袁益龙. 干热岩地热能开发技术挑战与发展战略[J]. 地球科学, 2024, 49(6): 2131-2147. |
[53] |
XIONG B, XU H, FANG C, et al. Construction and application of favorable target evaluation system for hot dry rock[J]. Petroleum Exploration and Development, 2025, 52(1): 258-271.
DOI |
[1] | 叶舒婉, 侯卫生, 杨玠, 汪海城, 白芸, 王永志. 三维地质智能建模研究进展[J]. 地学前缘, 2025, 32(4): 182-198. |
[2] | 肖凡, 杨华清, 唐奥, 黄旋财, 王翠翠. 基于机器学习与多源数据融合的东天山戈壁沙漠覆盖区中-酸性侵入岩岩性填图[J]. 地学前缘, 2025, 32(4): 199-212. |
[3] | 肖克炎, 李程, 唐瑞, 王瑶, 孙莉, 柳炳利, 樊铭静. 大数据智能预测评价[J]. 地学前缘, 2025, 32(4): 20-37. |
[4] | 张雨飞, 张杨, 吉俊杰, 成秋明. 基于机器学习方法的南海洋壳大地热流预测[J]. 地学前缘, 2025, 32(4): 235-249. |
[5] | 简富源, 张子鸣, 董岳霖, 张文璟, 郝风云, 王一鸣, 王宇, 张振杰. 基于多重分形与随机森林的新疆哈巴河金矿成矿预测[J]. 地学前缘, 2025, 32(4): 78-94. |
[6] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[7] | 张必敏, 王学求, 周建, 王玮, 刘汉粮, 刘东盛, Sounthone LAOLO, Phomsylalai SOUKSAN, 谢淼, 董春放, 柳青青, 鲁岳鑫, 王浩楠, 贺彬. 老挝铜资源成矿规律与基于机器学习的远景预测[J]. 地学前缘, 2025, 32(1): 61-77. |
[8] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[9] | 张利军, 鲁文豪, 张建东, 彭光雄, 卜建财, 唐凯, 谢渐成, 徐质彬, 杨海燕. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 苏恺明, 徐耀辉, 徐旺林, 张月巧, 白斌, 李阳, 严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究[J]. 地学前缘, 2024, 31(3): 530-540. |
[12] | 张进江, 郑剑磊, 王海滨, 郭磊, 刘江, 戚国伟. 内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示[J]. 地学前缘, 2024, 31(1): 127-141. |
[13] | 万渝生, 董春艳, 颉颃强, 李鹏川, 刘守偈, 李源, 王宇晴, 王堃力, 刘敦一. 华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示[J]. 地学前缘, 2024, 31(1): 77-94. |
[14] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用:古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
[15] | 杨立强, 和文言, 高雪, 王偲瑞, 李楠, 邱昆峰, 张良, 马强, 苏玉平, 李大鹏, 张智宇, 于红. 克拉通岩石圈三维物质架构示踪方法[J]. 地学前缘, 2023, 30(6): 391-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||