地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 182-198.DOI: 10.13745/j.esf.sf.2025.4.72

• 智能地质填图 • 上一篇    下一篇

三维地质智能建模研究进展

叶舒婉1(), 侯卫生1,2,*(), 杨玠3, 汪海城4, 白芸4, 王永志5   

  1. 1.中山大学 地球科学与工程学院, 广东 珠海 519082
    2.地质过程与矿产资源探查广东省重点实验室, 广东 珠海 519082
    3.中国地质大学(北京) 科学研究院, 北京 100083
    4.中国地质调查局 自然资源综合调查指挥中心, 北京 100055
    5.吉林大学 地球探测科学与技术学院, 吉林 长春 130061
  • 收稿日期:2025-02-20 修回日期:2025-05-10 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *侯卫生(1976—),男,教授,博士生导师,主要从事三维地质建模和全波形反演研究。E-mail: houwsh@mail.sysu.edu.cn
  • 作者简介:叶舒婉(1998—),女,博士研究生,主要从事三维地质建模研究。E-mail: yeshw6@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42372341);国家自然科学基金项目(41972302);广东省“珠江人才计划”引进创新团队项目(2021ZT09H399)

Advance of 3D smart geological modeling

YE Shuwan1(), HOU Weisheng1,2,*(), YANG Jie3, WANG Haicheng4, BAI Yun4, WANG Yongzhi5   

  1. 1. School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
    2. Guangdong Provincial Key Lab of Geological Processes and Mineral Resources, Zhuhai 519082, China
    3. Institute of Scientific Research, China University of Geosciences (Beijing), Beijing 100083, China
    4. Command Center of Natural Resource Comprehensive Survey, China Geological Survey, Beijing 100055, China
    5. College of Geoexploration Science and Technology, Jilin University, Changchun 130061, China
  • Received:2025-02-20 Revised:2025-05-10 Online:2025-07-25 Published:2025-08-04

摘要:

高精度的三维地质建模是数字孪生技术快速发展的重要基础,为资源预测、工程规划和灾害防治等领域提供了关键支撑。传统三维地质建模方法多依靠人工交互,难以满足复杂地质环境下对精细结构表达和实时更新的需求。为突破这些局限,近年来引入的机器学习与深度学习为地质建模提供了新的智能化解决方案,有效提升了模型的自动化程度和复杂结构的表达能力。本文系统回顾了三维地质建模的发展历程,总结了半智能化、机器学习和深度学习三个发展阶段的技术特征;深入剖析了深度学习与不确定性分析、迁移学习、主成分分析及多点地质统计学等方法的融合方法。同时,针对现有方法在数据稀疏处理、计算复杂性、模型可解释性和实时更新能力方面存在的不足,提出未来的研究趋势与发展方向,包括多模态数据融合、地质知识嵌入、轻量化模型优化、不确定性量化和人工智能大语言模型等。随着智能化建模技术的不断进步,三维地质模型的精度、可靠性和适应性将持续提升,进一步推动地质领域的数字孪生技术应用与工程实践发展。

关键词: 三维地质建模, 数字孪生, 深度学习, 机器学习

Abstract:

High-precision 3D geological modeling serves as a crucial foundation for the rapid advancement of digital twin technology, providing essential support for resource prediction, engineering planning, and disaster prevention. Traditional 3D geological modeling methods often rely on manual interaction, struggling to meet the demands of precise structural representation and real-time updates in complex geological conditions. To overcome these limitations, the recent introduction of machine learning and deep learning approaches offers new intelligent solutions, significantly improving model automation and the representation of complex geological structures. This paper systematically reviews the development of 3D geological modeling, summarizing technical characteristics across three distinct stages: semi-intelligent modeling, machine learning-based modeling, and deep learning-based modeling. Furthermore, we comprehensively analyze the integrated applications of deep learning with uncertainty analysis, transfer learning, principal component analysis and multiple-point geostatistics. Considering existing challenges such as sparse data processing, computational complexity, model interpretability, and real-time updating capabilities, we propose future research trends, including multimodal data fusion, embedding of geological knowledge, lightweight model optimization, uncertainty quantification and Large Language Models. With ongoing progress in intelligent modeling techniques, the accuracy, reliability, and adaptability of 3D geological models are expected to continuously improve, further advancing the application and engineering practice of digital twin technology in geology.

Key words: 3D geological modeling, digital twin, deep learning, machine learning

中图分类号: