地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 222-234.DOI: 10.13745/j.esf.sf.2025.4.75

• 智能地质填图 • 上一篇    下一篇

地铁沿线地质结构三维随机重建方法研究

陈勇华1(), 侯卫生2,3,*(), 郭清锋1, 杨松桦2, 叶舒婉2, 李鑫2   

  1. 1.广州地铁设计研究院股份有限公司, 广东 广州 510010
    2.中山大学 地球科学与工程学院, 广东 珠海 519082
    3.广东省地质过程与矿产资源探查重点实验室, 广东 珠海 519082
  • 收稿日期:2025-01-20 修回日期:2025-05-10 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *侯卫生(1976—),男,教授,博士生导师,主要从事三维地质建模与全波形反演研究。E-mail: houwsh@mail.sysu.edu.cn
  • 作者简介:陈勇华(1977—),男,高级工程师,主要从事地铁勘察与设计研究。E-mail: chenyonghua@gmdi.cn
  • 基金资助:
    国家自然科学基金项目(42372341);国家自然科学基金项目(41972302);广东省“珠江人才计划”引进创新团队项目(2021ZT09H399)

Study on stochastic reconstruction methods for 3D geological structures along metro lines

CHEN Yonghua1(), HOU Weisheng2,3,*(), GUO Qingfeng1, YANG Songhua2, YE Shuwan2, LI Xin2   

  1. 1. Guangzhou Metro Design & Research Institute Co. Ltd., Guangzhou 510010, China
    2. School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
    3. Guangdong Provincial Key Lab of Geological Processes and Mineral Resources, Zhuhai 519082, China
  • Received:2025-01-20 Revised:2025-05-10 Online:2025-07-25 Published:2025-08-04

摘要:

地铁是缓解大城市交通拥挤、增强城市综合承载能力和发展韧性的有效交通工具之一。高精度的三维地质模型是厘定地下空间的地质构造和不良地质体分布的重要数据基础,也是保证地铁工程建设安全的关键因素之一。然而,地铁工程地质数据整体量不多但局部密度高的特点,制约了地质体分布模式的有效识别和重建。本研究以广州地铁十一号线某区段为对象,针对白垩系、第四系沉积层及次火山岩复杂地质条件,系统对比了随机森林(RF)、XGBoost以及融合深度学习与多点统计学(DL+MPS)3种建模方法的性能。结果表明:DL+MPS方法通过深度神经网络提取全局特征,且与MPS局部优化相结合,在准确率(99.16%)、F1分数(98.91%)和ROC曲线AUC值(0.93~0.99)等关键指标上表现最优,能准确重建断层破碎带与火成岩体的空间接触关系,避免出现地层异常延伸和地质语义错乱现象。相较之下,随机森林和XGBoost虽在模型拟合阶段表现出较高训练精度(准确率分别达到99.60%和98.64%),但其模拟结果存在地质体离散分布、不合理外推及地层穿插等问题,钻孔验证准确率(最低为69.93%)显著低于DL+MPS方法(73.33%~87.50%)。研究表明:深度学习模型凭借强大的非线性特征提取能力,能有效应对地铁工程数据空间分布不均的挑战,为复杂地质条件下三维建模提供了更优解决方案,对提升地下工程安全性和数字孪生系统应用具有重要实践价值。

关键词: 三维重构, 地铁线路, 多点统计学, 深度学习

Abstract:

Constructing the metro system is one of the effective solutions to relieve traffic congestion in big cities and enhance the comprehensive carrying capacity and development resilience. High-precision three-dimensional (3D) geological model is an important data infrastructure for determining the geological structure and distribution of unfavorable geological bodies underground. And it is one of the keys to ensuring the safety of metro engineering construction. However, the characteristic that the overall amount of geological data of metro engineering is not large but the local density highly restricts the effective identification and reconstruction of the distribution patterns of geological bodies. Taking the geological structure at a station of Guangzhou Metro Line 11 as the concrete example, this study systematically compares the performance of three modeling methods: random forest (RF), XGBoost and hybrid method of deep learning and multi-point statistics (DL+MPS), under the complex geological conditions of Cretaceous strata, Quaternary sedimentary strata and subvolcanic rocks. The results illustrate that combining the advantages of simulating global features by deep neural network and the local optimization of MPS, the DL+MPS method shows the best performance in key indicators such as accuracy (99.16%), F1 score (98.91%) and AUC value of ROC curve (0.93-0.99). The DL+MPS method can accurately reconstruct the spatial relationship between fault fracture zone and igneous rock mass, and avoid abnormal extension of strata and geological semantic disorder. In contrast, although RF and XGBoost show high training accuracy in the model fitting stage with the accuracy rates of 99.60% and 98.64% respectively, some problems such as discrete distribution of geological bodies, unreasonable extrapolation and strata interpenetration appear in their simulation results. The minimum borehole dispersion value of the results by RF and XGBoost methods reaches 69.93%, is which is significantly lower than that of DL + MPS method (73.33%-87.50%). The research shows that the deep learning model can effectively deal with the challenge of uneven spatial distribution of subway engineering data by virtue of its strong nonlinear feature extraction ability, which provides a better solution for 3D modeling under complex geological conditions, and has important practical value for improving the safety of underground engineering and the application of digital twin system.

Key words: three-dimensional geological models, metro line, multipoint statistics, deep learning

中图分类号: