地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 20-37.DOI: 10.13745/j.esf.sf.2025.4.58

• 智能矿产预测 • 上一篇    下一篇

大数据智能预测评价

肖克炎1,2(), 李程1,2,*(), 唐瑞1,2, 王瑶1,2, 孙莉1,2, 柳炳利2, 樊铭静3   

  1. 1.中国地质科学院矿产资源研究所, 北京 100037
    2.成都理工大学 数学地质四川省重点实验室, 四川 成都 610059
    3.中国地质调查局天津地质调查中心, 天津 300170
  • 收稿日期:2024-11-30 修回日期:2025-04-01 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *李 程(1987—),男,副教授,主要从事地球化学及数学地质方向研究工作。E-mail: leecheng@cdut.edu.cn
  • 作者简介:肖克炎(1963—),男,研究员,长期从事矿产资源潜力评价和深部成矿预测研究工作。E-mail: kyanxiao@sohu.com
  • 基金资助:
    河北省战略性关键矿产研究协同创新中心开放基金项目(HGUXT-2024-1);自然资源部深部金矿勘查开采技术创新中心开放课题(LDKF-2023BZX-20);国家重点研发计划项目(2023YFC2906404);国家重点研发计划项目(2023YFC2906605);中国地质调查项目(DD20230366);中国地质调查项目(DD20230040);中国地质调查项目(DD20243222);湖南省地质院科技项目(HNGSTP202302)

Big data intelligent prediction and evaluation

XIAO Keyan1,2(), LI Cheng1,2,*(), TANG Rui1,2, WANG Yao1,2, SUN Li1,2, LIU Bingli2, FAN Mingjing3   

  1. 1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    2. Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
    3. Tianjin Center of China Geological Survey, Tianjin 300170, China
  • Received:2024-11-30 Revised:2025-04-01 Online:2025-07-25 Published:2025-08-04

摘要:

随着大数据时代的到来,大数据技术在矿产勘查中的应用已成为未来发展的趋势。本文系统梳理了大数据找矿和综合信息预测理论的发展历程,探讨了大数据在矿产预测中的关键技术,并结合实际案例,得出以下主要结论:首先,大数据找矿能够有效应对数据量和复杂性增加的问题,提供更准确的数据解读和预测支持;其次,大数据找矿作为一种技术手段,必须依赖于坚实的矿产找矿理论,特别是综合信息预测理论,后者不仅为大数据方法提供理论支撑,还能提高矿产资源预测的精度和效率;最后,基于综合信息预测理论,结合卷积神经网络(CNN)模型对内蒙古白音查干东山-毛登地区进行成矿预测,展示了其在矿产资源预测中的应用潜力。研究成果为大数据找矿的应用和理论发展提供了重要的参考和实践经验。

关键词: 大数据, 矿产资源预测, 机器学习, 综合信息矿产预测, 智能预测

Abstract:

With the arrival of the big data era, the application of big data technology in mineral exploration has become a trend for future development. This study systematically reviews the development of big data-based mineral exploration and integrated information prediction theories, explores the key technologies of big data in mineral prediction, and presents the following main conclusions based on practical case studies: First, big data mineral exploration can effectively address the challenges of increasing data volume and complexity, providing more accurate data interpretation and predictive support. Second, as a technological tool, big data mineral exploration must rely on solid mineral exploration theories, especially integrated information prediction theory. This theory not only provides theoretical support for big data methods but also improves the accuracy and efficiency of mineral resource predictions. Finally, based on integrated information prediction theory and using a convolutional neural network (CNN) model, mineral prediction for the Baiyinchagan Dongshan-Maodeng area in Inner Mongolia was conducted, demonstrating its application potential in mineral resource prediction. The research findings provide valuable references and practical experience for the application and theoretical development of big data in mineral exploration.

Key words: big data, mineral resource prediction, machine learning, integrated information mineral prediction, intelligent prediction

中图分类号: