地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 1-19.DOI: 10.13745/j.esf.sf.2025.7.20
收稿日期:
2025-07-17
修回日期:
2025-07-20
出版日期:
2025-07-25
发布日期:
2025-08-04
作者简介:
成秋明(1960—),男,教授,博士生导师,中国科学院院士,主要从事数学地球科学领域的研究。E-mail: qiuming.cheng@iugs.org
基金资助:
Received:
2025-07-17
Revised:
2025-07-20
Online:
2025-07-25
Published:
2025-08-04
摘要:
矿产资源是支撑社会经济发展的关键物质基础,其形成和分布受控于地球深部过程与浅表环境的复杂相互作用。随着全球矿产资源需求持续增长,传统矿产资源预测方法在覆盖区、深部隐伏矿及非传统找矿区域的应用面临巨大挑战。近年来,大数据和人工智能(AI)技术的快速发展为矿产资源研究提供了重要机遇,为矿产资源预测与评价提供了变革性的技术手段。本文系统梳理了矿产资源预测的理论演进历程,深入探讨了大数据与AI赋能的矿产资源预测新范式,包括“矿床”概念的拓展、地球系统-成矿系统-勘查系统-预测评价系统的多系统关联建模、地质调查数据与科研长尾数据的智能集成,以及人类智能(HI)与人工智能(AI)的深度融合。通过作者团队近年来完成的覆盖区矿产综合预测、深部矿产资源定量预测及全球斑岩铜矿知识图谱构建等研究项目的典型案例解剖,展示了非线性理论与AI技术在解决矿产资源预测关键科学问题中的创新应用。在此基础上,文章展望了未来数据驱动与智能协同将彻底改变矿产资源预测范式,显著提升矿产资源预测的精度和效率,推动矿产资源预测从传统经验模式向智能化、定量化方向转变,为新一轮找矿突破战略行动提供重要的理论和技术支撑。
中图分类号:
成秋明. 面向人类智能与人工智能融合的矿产资源预测新范式[J]. 地学前缘, 2025, 32(4): 1-19.
CHENG Qiuming. A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration[J]. Earth Science Frontiers, 2025, 32(4): 1-19.
图2 覆盖区找矿或深部矿产预测的诸多困难示意图:弱信息提取(左图);复杂叠加混合数据与成矿背景与异常分解(中图);不完善或缺失多元数据成矿信息的综合与集成(右图)
Fig.2 Schematic diagram illustrating key challenges in mineral exploration in covered regions or deep mineral resource prediction:Weak anomaly extraction (left); Decomposition of complexly mixed and superimposed data into backgrounds and anomalies (middle); Integration and synthesis of incomplete or missing multi-source metallogenic information (right)
图4 通过地球化学元素与重磁异常综合模型预测出小大青山—红娘山钼多金属“半隐伏”成矿带。识别出5个等距分布的中酸性侵入岩体(含隐伏体)和潜在矿化集中区,包含曹四夭特大型钼矿和泉子沟中型钼矿以及未知预测靶区。
Fig.4 An integrated model combining geochemical and gravity-magnetic anomalies predicts a “semi-concealed” Mo-polymetallic metallogenic belt in the Xiaodaqingshan-Hongniangshan area. Five evenly spaced intermediate-acid intrusive bodies (including concealed ones) and potential mineralization concentration zones are delineated, encompassing the Caosiyao giant Mo deposit, Quanzigou medium-sized Mo deposit, and undiscovered prospective targets.
图5 深部矿产资源预测评价相关的“科学问题、关键技术以及空间定位目标”
Fig.5 Critical scientific questions, key technologies, and targeting objectives related to deep mineral resource prediction and assessment
图6 研究区与构造背景、成矿作用、矿集区分布 (上)与典型矿床类型和成矿大地构造背景剖面示意图(下)
Fig.6 Study areas showing tectonic settings, mineralization processes, and ore district distribution (Upper) and schematic cross-section of typical deposit types and metallogenic geotectonic background (Lower)
图8 奇异性、广义自相似、分形谱系原理和模型示意图。奇异性指数Δα用于深部源引起的弱信息提取(左图); 成矿结构的广义自相似性用于深部矿体内插或外推预测(中图); 成矿系列和矿床谱系结构随深度变化规律,用于深部矿预测(右图)。
Fig.8 Schematic diagram illustrating the principles and models of singularity, generalized self-similarity, and fractal spectra. The singularity index Δα used to extract weak signals caused by deep sources (left); the generalized self-similarity of mineralization structures supports interpolation or extrapolation of deep ore bodies (middle); the variation patterns of mineralization series and ore deposit spectra with depth as a basis for deep mineral prediction (right).
图9 金川铜镍硫化物矿床自相似结构模型构建。(A)—金川矿区构造-岩体分布简图;(B)—逆冲推覆构造导致岩体-构造呈现三维自相似模式;(C)—Ⅱ矿区50行地质剖面图。其显示已知矿体下端呈现尖灭再现趋势,尖灭端新发现新矿体,并有向深部逐渐增厚的趋势。
Fig.9 Construction of a self-similar structural model for the Jinchuan Cu-Ni sulfide deposit. (A) Simplified map showing the tectonic and magmatic rock distribution in the Jinchuan mining area. (B) The thrusting and overthrusting tectonics result in a 3D self-similar pattern of intrusion-structure relationships. (C) A geological cross-section showing a known ore body exhibiting a pinch-and-swell pattern; at the pinch-out end, a new ore body was discovered.
图10 沿环太平洋和特提斯成矿域中新生代斑岩铜矿床分布图(数据来源于USGS data)
Fig.10 Distribution map of Mesozoic to Cenozoic porphyry copper deposits along the Circum-Pacific and Tethyan metallogenic belts (Data source: USGS)
图11 数学地球科学学科知识体系与矿产预测模型构建知识库
Fig.11 Knowledge system of Mathematical Geosciences and its integration into the knowledge base for mineral prediction model development
图13 斑岩铜矿知识图谱查询结果显示Cu和S元素在成矿地质过程的关联性。圆形符号表示节点(地质术语), 箭头连接线表示关联性,圆型的大小表示出现频率。
Fig.13 Query results from the knowledge graph of porphyry copper deposits, illustrating the relationship between Cu and S elements in the mineralization process. Circular symbols represent nodes (geological terms), the arrowed links indicate relationships, and the size of a circle represents the frequency of the node’s occurrence.
图14 矿产资源智能预测平台体系构架:多功能智能体关联、智能预测平台、数据库与计算资源库、知识图谱和大语言、预测计算大模型
Fig.14 Architecture of the intelligent mineral resource prediction platform: integration of multifunctional intelligent agents, mineral resources prediction platform, data and computational resource database, knowledge graph and large language models, and large predictive computing models
[1] |
AGTERBERG F P. Computer programs for mineral exploration[J]. Science, 1989, 245(4913): 76-81.
PMID |
[2] | SINGER D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources, 1993, 2(2): 69-81. |
[3] | BONHAM-CARTER G F. Geographic information systems for geoscientists: modelling with GIS[M]. Kidlington: Pergamon, 1994: 1-398. |
[4] | CARRANZA E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Amsterdam: Elsevier, 2009: 1-351. |
[5] | 李建威, 赵新福, 邓晓东, 等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学: 地球科学, 2019, 49(11): 1720-1771. |
[6] | 马哲, 魏江桥, 王安建, 等. 矿产资源全球治理要素理论框架构建[J]. 地球学报, 2023, 44(2): 271-278. |
[7] | CHEN Y J. Orogenic-type deposits and their metallogenic model and exploration potential[J]. Geology in China, 2006, 33(6): 1181-1196. |
[8] | HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250. |
[9] | DENG J, WANG Q F. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36(10): 219-274. |
[10] | ZHU R X, ZHANG H F, ZHU G, et al. Craton destruction and related resources[J]. International Journal of Earth Sciences, 2017, 106(7): 2233-2257. |
[11] | HU R Z, FU S L, HUANG Y, et al. The giant South China mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34. |
[12] | 赵鹏大. “三联式”资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学: 中国地质大学学报, 2002, 27(5): 482-489. |
[13] | 翟裕生. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 2007, 14(1): 172-181. |
[14] | 陈毓川, 裴荣富, 王登红. 三论矿床的成矿系列问题[J]. 地质学报, 2006, 80(10): 1501-1508 |
[15] | 王世称. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000: 1-343. |
[16] | CHENG Q M. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geology, 2008, 40(5): 503-532. |
[17] | CHENG Q M, OBERHÄNSLI R E, ZHAO M L. A new international initiative for facilitating data-driven Earth science transformation[J]. Geological Society Special Publication, 2020, 499(1): 225-240. |
[18] | STEPHENSON M H, CHENG Q M, WANG C S, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43(4): 1057-1062. |
[19] | AGTERBERG F. Geomathematics: theoretical foundations, applications and future developments[M]. Cham, Switzerland: Springer, 2014. |
[20] | 周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331. |
[21] | 周永章, 陈铄, 张旗, 等. 大数据与数学地球科学研究进展:大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
[22] | 肖克炎. “深部综合信息矿产资源预测评价”专辑特邀主编寄语[J]. 地球学报, 2020, 41(2): 130-134. |
[23] | 肖克炎. 成矿系列理论与找矿预测应用研究:“矿床成矿系列综合信息找矿预测”专辑特邀主编寄语[J]. 地球学报, 2023, 44(5): 748-752. |
[24] | LIU Y, CARRANZA E J M, XIA Q L. Developments in quantitative assessment and modeling of mineral resource potential: an overview[J]. Natural Resources Research, 2022, 31(4): 1825-1840. |
[25] | WANG W L, XIE S Y, GRUNSKY E J M, et al. Introduction to the thematic collection: applications of innovations in geochemical data analysis[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 23(1): geochem2022-058. |
[26] | CHEN G X, CHENG Q M, STEVE P. Special issue: data-driven discovery in geosciences: opportunities and challenges[J]. Mathematical Geosciences, 2023, 55(3): 287-293. |
[27] | SAGAR B S, CHENG Q M, MCKINLEY J, et al. Encyclopedia of mathematical geosciences[M]. Cham: Springer, 2023: 1705. |
[28] | XIAO F, CHENG Q M, AGTERBERG F. Fractals in geology and geochemistry[C]// Fractal and fractional. Basel: MDPI, 2025. |
[29] | MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266. |
[30] | AGTERBERG F P. A probability index for detecting favourable geological environments[J]. Canadian Institute of Mining and Metallurgy, 1971, 10: 82-91. |
[31] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10. |
[32] | HARRIS D P. Mineral resources appraisal: mineral endowment, resources, and potential supply: concepts, methods and cases[M]. Oxford: Oxford University Press, 1984: 445. |
[33] | CARGILL S M, MEYER R F, PICKLYK D D, et al. Summary of resource assessment methods resulting from the International Geological Correlation Program Project 98[J]. Mathematical Geology, 1977, 9(3): 211-220. |
[34] | HART P E, DUDA R O, EINAUDI M T. Prospector: a computer-based consultation system for mineral exploration[J]. Mathematical Geology, 1978, 10(5): 589-610. |
[35] | AGTERBERG F P, BONHAM-CARTER G F. Statistical applications in the earth sciences[C]// Geological survey of Canada. Ottawa: Canadian Government Publishing Centre, 1988: 89-9. |
[36] | CHENG Q M, AGTERBERG F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35. |
[37] | MALLET J L. Discrete modeling for natural objects[J]. Mathematical Geology, 1997, 29(2): 199-219. |
[38] | CHENG Q M, BONHAM-CARTER G F, RAINES G L. GeoDAS: a new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment[C]// Proceedings of the 20th International Geochemical Exploration Symposium (IGES). Santiago de Chile: Association of Applied Geochemists, 2001: 42-43. |
[39] | CHENG Q M, ZHANG S. Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point events[C]// Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium. Toronto, ON, Canada: IEEE, 2002: 2933-2935. |
[40] | CHENG Q M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 2012, 122: 55-70. |
[41] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[42] | MA X G. Knowledge graph construction and application in geosciences: a review[J]. Computers & Geosciences, 2022, 161: 105082. |
[43] | ZHANG Y F, LI J X, WANG Z Y, et al. Geospatial large language model trained with a simulated environment for generating tool-use chains autonomously[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 136: 104312. |
[44] | CHENG Q M. Integration of deep-time digital data for mapping clusters of porphyry copper mineral deposits[J]. Acta Geologica Sinica (English Edition), 2019, 93(Suppl 3): 8-10. |
[45] | WANG C S, HAZEN R M, CHENG Q M, et al. The Deep-Time Digital Earth program: data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): 156-166. |
[46] | ZHOU C H, WANG H, WANG C S, et al. Geoscience knowledge graph in the big data era[J]. Science China Earth Sciences, 2021, 64(7): 1105-1114. |
[47] | ZHANG Z J, KUSKY T, YANG X K, et al. A paradigm shift in Precambrian research driven by big data[J]. Precambrian Research, 2023, 399: 107235. |
[48] | 王学求. 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013, 32(2):190-197. |
[49] | COHEN D R, BOWELL R J. Exploration geochemistry[M]// HOLLANDH D, TUREKIANK K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 623-650. |
[50] | CHEN H Y, ZHANG J L. What is the future road for mineral exploration in the 21st century?[J]. Journal of Earth Science, 2022, 33(5): 1328-1329. |
[51] | CHENG Q. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 2012, 122: 55-70. |
[52] | CHENG Q. Vertical distribution of elements in regolith over mineral deposits and implications for mapping geochemical weak anomalies in covered areas[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 277-289. |
[53] | CHENG Q. Multifractal interpolation method for spatial data with singularities[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2015, 115(3): 235-240. |
[54] | XIAO F, LIN W P, CHENG Q M. Ab-initio calculations and molecular dynamics simulations of In, Ag, and Cu replacing Zn in sphalerite: implications for critical metal mineralization[J]. Ore Geology Reviews, 2023, 163: 105699. |
[55] | XIAO F, WANG K Q, CHENG Q M. Porphyry magma cooling and crystallization control of mineralization: insights from the dynamic numerical modeling[J]. Ore Geology Reviews, 2024, 166: 105956. |
[56] | ZUO R G, YANG F F, CHENG Q M., et al. A novel data-knowledge dual-driven model coupling artificial intelligence with a mineral systems approach for mineral prospectivity mapping[J]. Geology, 2025, 53(3): 284-288. |
[1] | 李博文, 王永志, 丁正江, 王斌, 温世博, 董宇浩, 纪政. 基于大模型与GraphRAG的胶东金矿智能搜索技术[J]. 地学前缘, 2025, 32(4): 155-164. |
[2] | 肖克炎, 李程, 唐瑞, 王瑶, 孙莉, 柳炳利, 樊铭静. 大数据智能预测评价[J]. 地学前缘, 2025, 32(4): 20-37. |
[3] | 张志庭, 彭帅, 阙翔, 陈麒玉. 基于提示和度量学习的小样本地质关系抽取[J]. 地学前缘, 2025, 32(4): 250-261. |
[4] | 冯婷婷, 蔡诗柔, 张振杰. 基于知识图谱的碳酸岩型稀土矿成矿要素挖掘[J]. 地学前缘, 2025, 32(4): 262-279. |
[5] | 董宇浩, 王永志, 田江涛, 王成, 温世博, 李博文. 基于知识图谱的斑岩型铜矿预测研究进展[J]. 地学前缘, 2025, 32(4): 280-290. |
[6] | 王永志, 温世博, 李博文, 陈星宇, 董宇浩, 田江涛, 王斌, Muhammed Atif BILAL, 纪政, 孙丰月. 大模型驱动的矿产资源智能预测超级智能体构建方法探索[J]. 地学前缘, 2025, 32(4): 38-45. |
[7] | 陈国雄, 张越鹏, 罗磊, 夏庆霖, 成秋明. 数据驱动斑岩型矿床时空预测模型[J]. 地学前缘, 2025, 32(4): 46-59. |
[8] | 周圣荃, 李以科, 王永志, 刘海明, 李楠, 柯昌辉, 李瑞萍, 赵永岗, 张丽. 生成式AI技术在地学研究中的应用现状及发展趋势[J]. 地学前缘, 2025, 32(4): 303-316. |
[9] | 周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6. |
[10] | 马建华, 刘金锋, 周永章, 郑益军, 陆可飞, 林星雨, 王汉雨, 张灿. 面向地质封存及其泄漏风险评价的CO2物联网在线监测[J]. 地学前缘, 2024, 31(4): 139-146. |
[11] | 叶育鑫, 刘家文, 曾婉馨, 叶水盛. 基于本体指导的矿产预测知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25. |
[12] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[13] | 王成彬, 王明果, 王博, 陈建国, 马小刚, 蒋恕. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36. |
[14] | 季晓慧, 董雨航, 杨中基, 杨眉, 何明跃, 王玉柱. 基于知识图谱多跳推理的中文矿物知识问答方法与系统[J]. 地学前缘, 2024, 31(4): 37-46. |
[15] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||