地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 1-19.DOI: 10.13745/j.esf.sf.2025.7.20

• 智能矿产预测 • 上一篇    下一篇

面向人类智能与人工智能融合的矿产资源预测新范式

成秋明1,2()   

  1. 1.中国地质大学(北京) 地质过程与成矿预测全国重点实验室, 北京 100083
    2.中国地质大学(北京) 教育部深时数字地球前沿科学中心, 北京 100083
  • 收稿日期:2025-07-17 修回日期:2025-07-20 出版日期:2025-07-25 发布日期:2025-08-04
  • 作者简介:成秋明(1960—),男,教授,博士生导师,中国科学院院士,主要从事数学地球科学领域的研究。E-mail: qiuming.cheng@iugs.org
  • 基金资助:
    国家自然科学基金重点项目(42050103);高等学校学科创新引智计划项目(B25052);广东省珠江人才创新团队资助项目(2021ZT09H399);教育部DDE前沿科学中心资助项目(2652023001)

A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration

CHENG Qiuming1,2()   

  1. 1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2. Science Frontier Center of Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-07-17 Revised:2025-07-20 Online:2025-07-25 Published:2025-08-04

摘要:

矿产资源是支撑社会经济发展的关键物质基础,其形成和分布受控于地球深部过程与浅表环境的复杂相互作用。随着全球矿产资源需求持续增长,传统矿产资源预测方法在覆盖区、深部隐伏矿及非传统找矿区域的应用面临巨大挑战。近年来,大数据和人工智能(AI)技术的快速发展为矿产资源研究提供了重要机遇,为矿产资源预测与评价提供了变革性的技术手段。本文系统梳理了矿产资源预测的理论演进历程,深入探讨了大数据与AI赋能的矿产资源预测新范式,包括“矿床”概念的拓展、地球系统-成矿系统-勘查系统-预测评价系统的多系统关联建模、地质调查数据与科研长尾数据的智能集成,以及人类智能(HI)与人工智能(AI)的深度融合。通过作者团队近年来完成的覆盖区矿产综合预测、深部矿产资源定量预测及全球斑岩铜矿知识图谱构建等研究项目的典型案例解剖,展示了非线性理论与AI技术在解决矿产资源预测关键科学问题中的创新应用。在此基础上,文章展望了未来数据驱动与智能协同将彻底改变矿产资源预测范式,显著提升矿产资源预测的精度和效率,推动矿产资源预测从传统经验模式向智能化、定量化方向转变,为新一轮找矿突破战略行动提供重要的理论和技术支撑。

关键词: 大数据, 大模型, 人工智能, 矿产资源预测, 非线性理论, 知识图谱, 深部与覆盖区找矿

Abstract:

Mineral resources serve as a critical material basis supporting socio-economic development, with their formation and distribution governed by the complex interactions between deep Earth processes and surface environmental conditions. With the ever-growing global demand for mineral resources, traditional mineral resource prediction methods face significant challenges in their application to covered regions, deeply buried deposits, and non-traditional exploration regions. In recent years, the rapid development of big data and artificial intelligence (AI) technologies has provided significant opportunities for mineral resource research, offering transformative tools for mineral prediction and assessment. This paper systematically reviews the theoretical evolution of mineral prediction and explores a new AI- and big data-powered paradigm, which includes an expanded concept of “ore deposits”, multi-system integrated modeling involving the Earth system, metallogenic system, exploration system, and prediction-evaluation system, intelligent integration of geological survey data and long-tail scientific data, and the deep integration of human intelligence (HI) and artificial intelligence (AI). Based on several representative case studies from recent research projects completed by the author’s team, including integrated mineral prediction in covered regions, quantitative prediction of deep mineral resources, and the construction of a global porphyry copper deposit knowledge graph, this paper demonstrates the innovative application of nonlinear theory and AI techniques in addressing key scientific issues related to mineral prediction. Building on this, the paper anticipates that future data-driven and intelligence-integrated research paradigms will fundamentally transform the paradigm of mineral prediction approaches, significantly enhancing their accuracy and efficiency. This shift will accelerate the transformation of Earth science research from traditional, experience-based practices to intelligent and quantitative methodologies, providing essential theoretical and technological support for the next generation of strategic breakthroughs in mineral exploration.

Key words: big data, large language model (LLM), artificial intelligence, mineral resource prediction, non-linear theory, knowledge graph, mineral exploration in deep and covered areas

中图分类号: