地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 46-59.DOI: 10.13745/j.esf.sf.2025.2.5

• 智能矿产预测 • 上一篇    下一篇

数据驱动斑岩型矿床时空预测模型

陈国雄1,*(), 张越鹏1, 罗磊1,2, 夏庆霖1,2, 成秋明1,3   

  1. 1.中国地质大学(武汉) 地质过程与成矿预测全国重点实验室, 湖北 武汉 430074
    2.中国地质大学(武汉) 资源学院, 湖北 武汉 430074
    3.中国地质大学(北京) 教育部深时数字地球前沿科学中心, 北京 100083
  • 收稿日期:2024-10-10 修回日期:2025-02-24 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *陈国雄(1988—),男,研究员,博士生导师,主要从事数学地球科学研究。E-mail: gxchen@cug.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(42430111)

Data-driven spatio-temporal prediction model of porphyry deposits

CHEN Guoxiong1,*(), ZHANG Yuepeng1, LUO Lei1,2, XIA Qinglin1,2, CHENG Qiuming1,3   

  1. 1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
    2. School of Earth Resources,China University of Geosciences (Wuhan), Wuhan 430074, China
    3. Science Frontier Center of Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2024-10-10 Revised:2025-02-24 Online:2025-07-25 Published:2025-08-04

摘要:

矿产资源预测与评价一直是大数据和人工智能在地球科学研究中的重要应用领域。自20世纪60年代,人工智能的研究浪潮和技术革命深刻影响和推动着矿产资源预测领域的发展,催生了重大理论突破和方法技术创新,有效支撑了找矿勘查实践。在当前地球系统科学研究的主旋律下,矿产资源定量预测亟需跳出“静态控矿要素空间相关分析”的思维惯性,考虑成矿系统“源-运-储-变-保”深时动态演化历史,向“全要素跨尺度动态综合预测”方向延伸,进而发展时空数据耦合的矿产资源智能预测评价理论和方法。斑岩型矿床作为全球铜、钼、金等矿产的重要来源,记录了板块构造运动驱动的地球层圈相互作用和物质循环的关键信息;无论是斑岩型矿床勘查还是板块构造重建,都积累了大量相关的全球地学时空数据。本文主要介绍了时空耦合的数据驱动斑岩型矿床成矿预测研究思路,包括深时数据集构建、机器学习模型开发及其应用实践案例;提出了融合深时岩浆岩地球化学特征和俯冲板块动力学参数的斑岩型矿床时空预测机器学习模型;通过大数据分析揭示了俯冲碳酸盐岩通量是决定岩浆成矿禀赋的关键动力学参数,为沉积物俯冲在大规模岩浆成矿中的关键作用提供了地球动力学证据;定量评价了安第斯成矿带斑岩矿床时空分布规律及其资源潜力。因此,发展时空耦合的成矿预测理论和方法可为理解深时物质循环和资源效应、揭示矿产资源时空分布规律以及指导矿产勘查提供重要思路和独特视角。

关键词: 数据驱动, 人工智能, 斑岩型矿床, 成矿预测, 地球系统科学

Abstract:

Mineral resource prediction and evaluation have long been important application areas for big data and artificial intelligence (AI) in geosciences research. Since the 1960s, the waves of AI research and technological revolutions have profoundly impacted the development of mineral resource prediction, leading to significant breakthroughs in both theory and technical methods in this field, thereby supporting mineral exploration efforts. In the context of current Earth system science research, quantitative mineral resource prediction needs to move beyond the traditional thinking of “static spatial correlation analysis of ore-controlling factors” and consider the deep-time dynamic evolution history of metallogenic systems, including the “source-transport-storage-transformation-preservation” processes. This requires extending to “multi-factor, cross-scale dynamic integrated prediction” within Earth system science, and developing theories and methods for intelligent mineral resource prediction and evaluation that couple spatiotemporal data. Porphyry deposits are major sources of copper, molybdenum, gold, and other minerals globally, recording key information about the Earth’s lithospheric interactions and material cycles driven by plate tectonics. Both porphyry deposit exploration and plate tectonic reconstruction have accumulated vast amounts of relevant global geospatial data. This paper primarily introduces a data-driven spatiotemporal machine learning model for predicting porphyry deposits, including the construction of deep-time geoscience datasets, machine learning models, and their application cases. We propose a spatiotemporal machine learning model for porphyry deposit prediction that integrates deep-time igneous geochemical data with dynamics parameters of plate subduction. The big data mining revealed that the carbonate subduction flux is a key parameter determining the mineralization potential of arc magmas, providing geodynamic evidence for the critical role of sediment subduction in magmatic-hydrothermal porphyry mineralization. The study also quantitatively evaluates the spatiotemporal distribution patterns and resource potential of porphyry copper deposits in the Andes belt across different geological periods. Therefore, the development of spatiotemporal coupled metallogenic prediction theories and methods can provide important insights and unique perspectives for understanding material recycling and resource effects in deep time, predicting the spatiotemporal distribution of potential mineral resources, thereby guiding mineral exploration.

Key words: data-driven discovery, artificial intelligence, porphyry ore deposits, mineral resource prediction, Earth system science

中图分类号: