地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 317-328.DOI: 10.13745/j.esf.sf.2025.4.56

• 人工智能驱动地学知识发现 • 上一篇    下一篇

基于勘查大数据的控矿作用空间非平稳性定量研究:以三山岛金矿床为例

黄继先1,2(), 李苇琪1,2, 邓浩1,2,*(), 万世军1,2, 李晓3, 毛先成1,2   

  1. 1.有色金属成矿预测与地质环境监测教育部重点实验室(教育部), 中南大学地球科学与信息物理学院, 湖南 长沙 410083
    2.湖南有色资源与地质灾害探查重点实验室, 湖南 长沙 410083
    3.招金矿业股份有限公司, 山东 烟台 265400
  • 收稿日期:2025-01-15 修回日期:2025-04-21 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *邓 浩(1983—),男,博士,副教授,博士生导师,主要从事三维成矿预测相关工作。E-mail: haodeng@csu.edu.cn
  • 作者简介:黄继先(1973—),女,博士,讲师,主要从事三维空间分析与三维成矿预测相关工作。E-mail: jxhuang@csu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(42030809);国家自然科学基金面上项目(42172328);国家自然科学基金面上项目(42272344);国家自然科学基金面上项目(42072325);国家自然科学基金面上项目(42202332)

Quantitative study on spatial non-stationarity of ore-controlling processes based on exploration big data: A case study of Sanshandao gold deposit

HUANG Jixian1,2(), LI Weiqi1,2, DENG Hao1,2,*(), WAN Shijun1,2, LI Xiao3, MAO Xiancheng1,2   

  1. 1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education), School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    2. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China
    3. Zhaojin Mining Industry Co., Ltd., Yantai 265400, China
  • Received:2025-01-15 Revised:2025-04-21 Online:2025-07-25 Published:2025-08-04

摘要:

隐伏矿体三维预测正在逐渐成为地球深部矿产资源勘查的关键技术和方法,准确把握控矿因素与矿化的关联关系对模型预测性能至关重要。矿化的形成是一个典型的空间非平稳过程,利用大数据技术,从勘查数据出发,定量探索控矿因素与矿化的空间非平稳关系及其特征,可为三维成矿预测建模提供更精准的关键参数,有助于从定量的角度厘清控矿作用规律及其背后的成因。本文以三山岛金矿床为研究实例,对控矿作用的空间非平稳性及其特征展开研究,首先利用三维地理加权回归(geographical weighted regression,GWR)模型探测控矿因素对矿化影响的空间非平稳性;随后通过方向加权改进三维GWR的权函数,以此为基础分析控矿作用的各向异性;然后将多尺度GWR模型扩展到三维空间,针对不同控矿因素研究其对矿化影响的多尺度特征;接下来通过计算不同控矿因素对矿化影响的平稳性指数,比较分析其平稳性程度;最后对不同控矿因素对矿化的影响强度与变异程度进行对比分析,结合成矿规律进一步挖掘了各控矿因素对矿化影响的方向、尺度及强度特征的相互关联关系。

关键词: 空间非平稳性, 地理加权回归, 各向异性, 多尺度GWR, 三维成矿预测

Abstract:

Three-dimensional prediction of concealed ore bodies is gradually becoming a key technology and method for mineral resources exploration in the deep earth. Accurately calibrating the association between ore-controlling factors and mineralization is crucial to the performance of prediction model. The formation of mineralization is a typical spatial non-stationary process. Based on exploration data, leveraging big data technology to quantitatively investigate the spatial non-stationarity in the relationship between ore-controlling factors and mineralization can not only provide more accurate key parameters for prediction model, but help clarify the genetic mechanism behind mineralization. In this paper, we take the Sanshandao gold deposit as an example to study the characteristics of spatial non-stationary influence of ore-controlling factors on mineralization. First, the 3D Geographical Weighted Regression (GWR) model is introduced to explore the spatial non-stationary influence. Second, the anisotropy is analyzed by introducing the directional factor to the weight calculation of 3D GWR. Third, the multi-scale characteristic is explored by applying the 3D multiscale GWR model (MGWR). Furthermore, the stationary index is calculated to analyze the stationarity degree of different ore-controlling factors’ influence. Subsequently, a comparative analysis of the intensity and variability of different ore-controlling factors’ influence is carried out. Finally, the interrelationship among direction, scale and intensity of each ore-controlling factor’s influence on the mineralization is further explored based on the mineralization laws.

Key words: spatial non-stationarity, geographical weighted regression, anisotropic effect, multi-scale geographical weighted regression, 3D metallogenic prognosis

中图分类号: