[1] |
周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6.
DOI
|
[2] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
DOI
|
[3] |
ZHANG Y, WEI C, WU S, et al. Geogpt: understanding and processing geospatial tasks through an autonomous gpt[J]. arXiv preprint, 2023. DOI: arXiv:2307.07930.
|
[4] |
马凯. 地质大数据表示与关联关键技术研究[D]. 武汉: 中国地质大学(武汉), 2018.
|
[5] |
WANG B, MA K, WU L, et al. Visual analytics and information extraction of geological content for text-based mineral exploration reports[J]. Ore Geology Reviews, 2022, 144: 104818.
|
[6] |
朱小龙. 地质文本中油气藏特征提取及成藏知识图谱构建研究[D]. 武汉: 中国地质大学(武汉), 2021.
|
[7] |
杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.
|
[8] |
冯雅杰, 王永志, 丁正江, 等. 胶西北金矿成矿模式及找矿技术方法演变[J]. 地学前缘, 2025, 32(4): 165-181.
|
[9] |
王永志, 金樑, 朱月琴, 等. 基于大数据技术的地学文档关键词提取算法研发[J]. 地球物理学进展, 2018, 33(3): 1274-1281.
|
[10] |
邱芹军, 田苗, 吴麒瑞, 等. 基于多源异构数据的地质知识图谱构建与应用[J/OL]. 地学前缘, 2024, 31: 1-17[2025-05-22]. https://doi.org/10.13745/j.esf.sf.2024.11.69.
|
[11] |
CHEN J, LIN H, HAN X, et al. Benchmarking large language models in retrieval-augmented generation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(16): 17754-17762.
|
[12] |
SIRIWARDHANA S, WEERASEKERA R, WEN E, et al. Improving the domain adaptation of retrieval augmented generation (RAG) models for open domain question answering[J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1-17.
|
[13] |
文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
DOI
|
[14] |
EDGE D, TRINH H, CHENG N, et al. From local to global: A graph rag approach to query-focused summarization[J]. arXiv preprint, 2024. DOI: arXiv:2404.16130.
|
[15] |
MARKUS J. BUEHLERCA1. Generative retrieval-augmented ontologic graph and multiagent strategies for interpretive large language model-based materials design[J]. ACS Engineering Au, 2024, 4(2): 241-277.
DOI
PMID
|
[16] |
PATRICK L, ETHAN P, ALEKSANDRA P, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. Neural Information Processing Systems, 2020, 33: 9459-9474.
|
[17] |
KHADIR A C, ALIANE H, GUESSOUM A. Ontology learning: grand tour and challenges[J]. Computer Science Review, 2021, 39: 100339.
|
[18] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI
|
[19] |
TORO S, ANAGNOSTOPOULOS A V, BELLO S M, et al. Dynamic retrieval augmented generation of ontologies using artificial intelligence (DRAGON-AI)[J]. Journal of Biomedical Semantics, 2024, 15(1): 19.
DOI
PMID
|
[20] |
叶育鑫, 刘家文, 曾婉馨, 等. 基于本体指导的矿产预测知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25.
DOI
|
[21] |
HU X M, MA X G, MA C, et al. The geoscience knowledge system, ontology and knowledge graph for data-driven discovery: preface[J]. Geoscience Frontiers, 2023, 14(5): 332-333.
|
[22] |
王岩, 王登红, 王成辉, 等. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘, 2024, 31(4): 438-455.
DOI
|
[23] |
刘向东, 丁正江, 邱昆峰, 等. 胶东台上—水旺庄巨型金矿床矿体空间分布规律及深部找矿预测[J/OL]. 地学前缘, 2024, 31: 1-19[2024-12-31]. https://doi.org/10.13745/j.esf.sf.2024.12.52.
|
[24] |
王斌, 周明岭, 丁正江, 等. 胶西北蚀变岩型金矿构造控矿机制与三维深部定位预测[J]. 地学前缘, 2025, 32(4): 140-154.
|
[25] |
张前龙, 周永章, 郭兰萱, 等. 找矿知识图谱的智能化应用: 以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15.
DOI
|
[26] |
DING Y J, FAN W Q, NING L B, et al. A survey on RAG meets LLMs: towards retrieval-augmented large language models[J]. arXiv preprint, 2024. DOI: arXiv:2405.06211v3.
|
[27] |
WANG J, ZENG J, SHENG J. Enhancing and accelerating image-text retrieval with knowledge graphs and FAISS[C]// 2024 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE, 2024: 1-6.
|
[28] |
GUPTA S, RANJAN R, SINGH S N. A comprehensive survey of Retrieval-Augmented Generation (RAG): evolution, current landscape and future directions[J]. arXiv preprint, 2024. DOI: arXiv:2410.12837.
|
[29] |
FANG F T, BAI Y L, NI S W, et al. Enhancing noise robustness of retrieval-augmented language models with adaptive adversarial training[J]. arXiv preprint, 2024. DOI: arXiv:2405.20978.
|
[30] |
DONG Y, WANG S, ZHENG H, et al. Advanced RAG models with graph structures: optimizing complex knowledge reasoning and text generation[C]// 2024 5th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). IEEE, 2024: 626-630.
|
[31] |
HAN H Y, WANG Y, SHOMER H, et al. Retrieval-augmented generation with graphs (graphrag)[J]. arXiv preprint, 2024. DOI: arXiv:2501.00309.
|
[32] |
韦一金, 任有强, 赵慧, 等. 基于GraphRAG的中国马铃薯新品种知识图谱构建[J]. 植物遗传资源学报, 2025, 26(6), 1229-1242.
|
[33] |
WU J D, ZHU J Y, QI Y L, et al. Medical graph rag: towards safe medical large language model via graph retrieval-augmented generation[J]. arXiv preprint, 2024. DOI: arXiv:2408.04187.
|
[34] |
PENG BC, ZHU Y, LIU Y C, et al. Graph retrieval-augmented generation: a survey[J]. arXiv preprint, 2024. DOI: arXiv:2408.08921v2.
|
[35] |
ZHANG Q, CHEN S, BEI Y, et al. A Survey of graph retrieval-augmented generation for customized large language models[J]. arXiv preprint, 2025. DOI: arXiv:2501.13958.
|
[36] |
QIU Q J, TIAN M, MA K, et al. A question answering system based on mineral exploration ontology generation: a deep learning methodology[J]. Ore Geology Reviews, 2023, 153: 105294.
|
[37] |
宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104.
|
[38] |
宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771.
|
[39] |
SARMAH B, MEHTA D, HALL B, et al. Hybridrag: integrating knowledge graphs and vector retrieval augmented generation for efficient information extraction[C]// Proceedings of the 5th ACM International Conference on AI in Finance. Brooklyn: New York University, 2024: 608-616.
|
[40] |
ES S, JAMES J, ESPINOSA A L, et al. RAGAS: automated evaluation of retrieval augmented generation[C]// Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:System Demonstrations. Malta: Association for Computational Linguistics, 2024: 150-158.
|