地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 250-261.DOI: 10.13745/j.esf.sf.2025.4.65

• 人工智能驱动地学知识发现 • 上一篇    下一篇

基于提示和度量学习的小样本地质关系抽取

张志庭1,2,3(), 彭帅1,4,*(), 阙翔4,5, 陈麒玉1,4   

  1. 1.中国地质大学(武汉) 计算机学院, 湖北 武汉 430074
    2.自然资源部基岩区矿产资源勘查工程技术创新中心, 贵州 贵阳 550081
    3.贵州省战略矿产智慧勘查全省重点实验室, 贵州 贵阳550081
    4.智能地学信息处理湖北省重点实验室, 湖北 武汉 430074
    5.福建农林大学 计算机与信息学院, 福建 福州 350002
  • 收稿日期:2025-02-26 修回日期:2025-04-16 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *彭 帅(2002—),男,硕士研究生,研究方向为地学信息化与智能化。E-mail: 2567438963@qq.com
  • 作者简介:张志庭(1975—),男,博士,主要从事地矿工作信息化与智能化、三维地质过程模拟等研究工作。E-mail: zhangzt@cug.edu.cn
  • 基金资助:
    贵州省科技厅科技重大专项“基于大数据的贵州西部重要战略矿产成矿规律与高效找矿勘查研究”(2025-2027);贵州省锰矿精确探矿科技创新人才团队(贵州省锰矿探矿顶尖专家团队)项目(黔科合人才CXTD[2025]026);国家重点研发计划项目(2023YFF0718000);贵州省科技计划项目(黔科合平台人才ZDSYS[2023]005)

Few-shot geological relationship extraction based on prompt and metric learning

ZHANG Zhiting1,2,3(), PENG Shuai1,4,*(), QUE Xiang4,5, CHEN Qiyu1,4   

  1. 1. School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
    2. Technology Innovation Center of Mineral Resources Explorations Engineering in Bedrock Zones, Ministry of Natural Resources, Guiyang 550081, China
    3. Guizhou Key Laboratory for Strategic Mineral Intelligent Exploration, Guiyang 550081, China
    4. Hubei Key Laboratory of Intelligent Geo-Information Processing, Wuhan 430074, China
    5. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2025-02-26 Revised:2025-04-16 Online:2025-07-25 Published:2025-08-04

摘要:

地质领域研究正经历以构建新知识体系为核心、大数据为驱动的深刻变革。地质知识图谱的构建能够有效地解决在数据分散状态下的知识发现与推理受限等问题。关系抽取技术作为知识图谱构建的关键技术之一,在地质实体关系识别中发挥关键作用。传统关系抽取技术高度依赖大规模标注数据。然而地质领域中实体关系复杂且专业性强,人工标注数据耗时费力,致使大规模标注数据短缺。因此,传统关系抽取技术在地质领域的有效应用受限。针对上述困境,本研究提出基于原型网络的地质关系抽取小样本学习方法,创新性地引入增强提示学习机制,并通过对比学习优化实例表示和关系描述表示,显著地提升了原型代表性。同时,采用加权损失函数和困难任务辅助训练策略,增强模型对困难任务的关注度,有效地提高了整体准确率。实验结果表明,本文提出的模型在地质小样本关系抽取数据集的5way 1-shot场景下准确率达到82.16%,相比通用领域先进模型SimpleFSRE提升1.94%,相比原型网络Proto-BERT方法提升9.01%,验证了所提方法的有效性。

关键词: 小样本学习, 关系抽取, 地质知识图谱, 原型网络, 提示学习

Abstract:

The research in the field of geology is undergoing profound transformations, with the construction of a new knowledge system as its core and big data serving as the driving force. The construction of geological knowledge graphs can effectively address the challenge of knowledge discovery and limited reasoning in scenarios characterized by fragmented data. As one of the critical technologies for constructing knowledge graphs, relation extraction technology plays a pivotal role in identifying relationships between geological entities. Traditional relation extraction techniques are intrinsically contingent upon extensive large-scale annotated datasets. However, the intricacy and specificity of entity relationships in the geological domain render manual annotation of data laborious and time-consuming, consequently leading to a paucity of large-scale labeled datasets. Therefore, the effective implementation of traditional relation extraction techniques within the geological domain is significantly circumscribed. Given the above dilemmas, this study proposes a few-shot learning method for geological relation extraction based on the prototypical network, which innovatively introduces an enhanced prompt learning mechanism and optimizes the instance representation and relation description representation through contrastive learning, thereby significantly improving the representativeness of the prototype. Meanwhile, the weighted loss function and difficult task-assisted training strategy are adopted to enhance the model’s focus on difficult tasks, which effectively improves the overall accuracy. The experimental findings demonstrate that our approach achieves an accuracy of 82.16% in the 5-way 1-shot scenario of a geological few-shot relation extracted dataset. This represents an enhancement of 1.94% over the advanced general-domain model, SimpleFSRE, and 9.01% over the prototypical network, Proto-BERT method. These results substantiate the efficacy of our method.

Key words: few-shot learning, relation extraction, geological knowledge graph, prototype network, prompt learning

中图分类号: