地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 38-45.DOI: 10.13745/j.esf.sf.2025.7.1

• 智能矿产预测 • 上一篇    下一篇

大模型驱动的矿产资源智能预测超级智能体构建方法探索

王永志1,2,3,*(), 温世博2, 李博文1, 陈星宇2, 董宇浩1, 田江涛3, 王斌4,5, Muhammed Atif BILAL2, 纪政2, 孙丰月6   

  1. 1.吉林大学 综合信息矿产预测研究所, 吉林 长春 130061
    2.吉林大学 地球探测科学与技术学院, 吉林 长春 130061
    3.新疆维吾尔自治区地质研究院, 新疆 乌鲁木齐 830057
    4.自然资源部深部金矿勘查开采技术创新中心, 山东 威海 264209
    5.山东省地质矿产勘查开发局 第六地质大队, 山东 威海 264209
    6.吉林大学 地球科学学院, 吉林 长春 130061
  • 收稿日期:2024-12-10 修回日期:2025-05-26 出版日期:2025-07-25 发布日期:2025-08-04
  • 通信作者: *王永志(1974—),男,博士,教授,主要从事地球科学大数据分析与挖掘、矿产资源智能预测等理论与应用研究工作。 E-mail: wangyongzhi@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC2906903);国家重点研发计划项目(2021YFC2901801);国家重点研发计划项目(2023YFC2907105);国家自然科学基金重点项目(42230810);自然资源部科技支撑项目(ZKKJ202419);山东省地质矿产局科技攻关项目(KY202502)

Construction technology of super-agents for intelligent mineral resources prediction driven by large model

WANG Yongzhi1,2,3,*(), WEN Shibo2, LI Bowen1, CHEN Xingyu2, DONG Yuhao1, TIAN Jiangtao3, WANG Bin4,5, Muhammed Atif BILAL2, JI Zheng2, SUN Fengyue6   

  1. 1. Institute of Integrated Information for Mineral Resources Prediction, Jilin University, Changchun 130061, China
    2. College of Geoexploration Science and Technology, Jilin University, Changchun 130061, China
    3. Xinjiang Academy of Geological Research, ürümqi 830057, China
    4. Ministry of Natural Resources Technology Innovation Center for Deep Gold Resources Exploration and Mining, Weihai 264209, China
    5. No.6 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources, Weihai 264209, China
    6. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2024-12-10 Revised:2025-05-26 Online:2025-07-25 Published:2025-08-04

摘要:

矿产资源预测是数学地球科学领域的一项重要研究内容,需使用多种软件处理跨专业地学数据,面临处理过程复杂、工作量巨大、语义难对齐等诸多问题,给研究人员带来巨大挑战。随着新一代生成式人工智能的大模型、智能体等出现,极大地推动了各行业的变革性发展,亦赋能矿产资源预测向智能预测跨越。本文提出一种大模型驱动的矿产资源智能预测超级智能体方法,以多模态大模型(如DeepSeek、通义千问)为基础底座,依托通用智能体技术创建由管理智能体和智能体群构成的超级智能体。智能体群包括地质智能体群、地球物理智能体群、地球化学智能体群、遥感智能体群等,每个智能体群含有多个单一智能体或小型智能体群,每个智能体访问具体的工具(本地自定义、网络及自动生成)、数据等。智能预测超级智能体自动感知外界发送的预测要求,由管理智能体串行或并行调用多个智能体群、单一智能体(如生成二维图)、工具(如插值)、访问数据等完成矿产资源智能化预测任务。以地球化学图生成为例,深度剖析通过智能体与大模型交互完成任务的内部运行机制,一键式智能生成一种或多种地球化学图,证明智能计算方法的有效性。通过将大模型、智能体与矿产资源预测业务三者深度融合,在输入为文字或语音时即可完成零代码的预测任务,为创建矿产资源智能预测新范式提供有益探索。

关键词: 矿产资源预测, 智能预测, 大模型, 大语言模型, 智能体, 超级智能体

Abstract:

Mineral resource prediction is a key area of research in mathematical geoscience, involving the integration of diverse, cross-disciplinary geoscientific datasets. This process involves significant computational complexity and workload, along with semantic inconsistencies, which pose significant challenges to researchers. The emergence of next-generation generative artificial intelligence, particularly large language models (LLMs) and intelligent agents, is catalyzing transformative advances across industries, facilitating the transition toward intelligent mineral prediction. This study proposes a super-agent framework for AI-driven mineral resource forecasting, built upon multimodal large language models (MLLMs) (e.g., DeepSeek, Qianwen) and agent orchestration frameworks. The super-agent framework comprises a management agent and multiple specialized agent groups (geological, geophysical, geochemical, remote sensing), each comprising multiple atomic agents or lightweight agent collectives. Individual agents are capable of accessing and invoking specific tools—including those locally deployed, cloud-based, or dynamically generated—as well as datasets and services. Upon receiving external prediction tasks, the management agent dynamically coordinates the workflow. This involves orchestrating specialized agent groups, atomic agents (e.g., for geochemical map generation), analytical tools (e.g., interpolation algorithms), and relevant data sources, executing tasks either sequentially or in parallel as needed. Using geochemical map generation as a case study, we elucidate the internal mechanisms of agent-model collaboration, enabling one-click generation of numerous geochemical element maps (up to 39 different elements), thereby validating the effectiveness of this AI-driven approach. By seamlessly integrating multimodal LLMs, intelligent agents, and domain-specific mineral prediction workflows, this framework enables zero-code operation with multimodal interaction through natural language (text or voice), and presents a promising approach for establishing a new paradigm in intelligent mineral resource prediction.

Key words: mineral resources prediction, intelligent prediction, large models, large language models, agent, super-agents

中图分类号: