[1] |
成秋明. 极端地质事件定量模拟与预测[J]. 中国科学: 地球科学, 2022, 52(6): 975-991.
|
[2] |
SINGER D A. Progress in integrated quantitative mineral resource assessments[J]. Ore Geology Reviews, 2010, 38(3): 242-250.
|
[3] |
赵鹏大, 陈建平, 张寿庭. “三联式” 成矿预测新进展[J]. 地学前缘, 2003, (2): 455-463.
|
[4] |
王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10): 1399-1403.
|
[5] |
王世称, 陈永良, 夏立显, 等. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000.
|
[6] |
CHENG Q. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5): 503-532.
|
[7] |
肖克炎, 樊铭静, 孙莉, 等. 矿床成矿系列综合信息预测理论方法及其应用[J]. 地球学报, 2023, 44(5): 769-780.
|
[8] |
何文娜. 大数据时代基于物联网和云计算的地质信息化研究[D]. 长春: 吉林大学, 2013.
|
[9] |
肖克炎, 李程, 唐瑞, 等. 大数据智能预测评价[J/OL]. 地学前缘, 1-18[2025-6-28]. https://doi.org/10.13745/j.esf.sf.2025.4.58.
|
[10] |
周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6.
DOI
|
[11] |
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
DOI
|
[37] |
LIN Z, DENG C, ZHOU L, et al. GeoGalactica: a scientific large language model in Geoscience[J]. arXiv preprint, 2023.
|
[38] |
王嘉翔. 基于大语言模型的斑岩型铜矿找矿标志智能识别研究[D]. 长春: 吉林大学, 2024.
|
[39] |
ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv preprint, 2023. DOI: arXiv:2303.18223.
|
[40] |
ZHANG D, YU Y, DONG J, et al. MM-LLMs: recent advances in multimodal large language models[J]. arXiv preprint, 2024. DOI: arXiv:2401.13601.
|
[41] |
ZHANG W, CAI M, ZHANG T, et al. EarthGPT: a universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20.
|
[42] |
CHEN J, LIN B, XU R, et al. MapGPT: map-guided prompting with adaptive path planning for vision-and-language navigation[J]. arXiv preprint, 2024. DOI: arXiv:2401.07314.
|
[43] |
ZHAN Y, XIONG Z, YUAN Y. SkyEyeGPT: unifying remote sensing vision-language tasks via instruction tuning with large language model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 221: 64-77.
|
[44] |
DAVIES R S, TROTT M, GEORGI J, et al. Artificial intelligence and machine learning to enhance critical mineral deposit discovery[J]. Geosystems and Geoenvironment, 2025, 4(2): 100361.
|
[45] |
XIE J, CHEN Z, ZHANG R, et al. Large multimodal agents: a survey[J]. arXiv preprint, 2024. DOI: arXiv:2402.15116.
|
[46] |
ALZUBI S, BROOKS C, CHINIYA P, et al. Open deep search: democratizing search with open-source reasoning agents[J]. arXiv preprint, 2025. DOI: arXiv:2503.20201.
|
[47] |
GUO S, DENG C, WEN Y, et al. Ds-agent: automated data science by empowering large language models with case-based reasoning[J]. arXiv preprint, 2024. DOI: arXiv:2402.17453.
|
[12] |
YANG F, ZUO R, KREUZER O P. Artificial intelligence for mineral exploration: a review and perspectives on future directions from data science[J]. Earth-Science Reviews, 2024: 104941.
|
[13] |
XIAO F, CHEN W, WANG J, et al. A hybrid logistic regression: gene expression programming model and its application to mineral prospectivity mapping[J]. Natural Resources Research, 2022, 31(4): 2041-2064.
|
[14] |
WANG J, ZUO R, XIONG Y. Mapping mineral prospectivity via semi-supervised random forest[J]. Natural Resources Research, 2020, 29(1): 189-202.
|
[15] |
ABEDI M, NOROUZI G H, BAHROUDI A. Support vector machine for multi-classification of mineral prospectivity areas[J]. Computers & Geosciences, 2012, 46: 272-283.
|
[16] |
XIONG Y, ZUO R. A positive and unlabeled learning algorithm for mineral prospectivity mapping[J]. Computers & Geosciences, 2021, 147: 104667.
|
[17] |
YANG F, ZUO R. Geologically constrained convolutional neural network for mineral prospectivity mapping[J]. Mathematical Geosciences, 2024, 56(8): 1605-1628.
|
[18] |
XU Y, ZUO R. An interpretable graph attention network for mineral prospectivity mapping[J]. Mathematical Geosciences, 2024, 56(2): 169-190.
|
[19] |
唐赧钰, 申俊峰, 陈强, 等. 基于深度学习的安徽黄屯铜金矿床黄铜矿定量分析及其意义[J]. 现代地质, 2024, 38(6): 1585-1593.
|
[20] |
ZHANG Y, WEI C, WU S, et al. GeoGPT: understanding and processing geospatial tasks through an autonomous gpt[J]. arXiv preprint, 2023. DOI: 2307.07930.
|
[21] |
李强. 2025政府工作报告[R]. [2025-03-05]. https://www.gov.cn/zhuanti/2025qglh/2025zfgzbgjd/index.htm.
|
[22] |
YU S, DENG H, LIU Z, et al. Identification of geochemical anomalies using an end-to-end transformer[J]. Natural Resources Research, 2024, 33(3): 973-994.
|
[23] |
WANG Z, ZUO R, DONG Y. Mapping geochemical anomalies through integrating random forest and metric learning methods[J]. Natural Resources Research, 2019, 28(4): 1285-1298.
|
[24] |
冯婷婷, 蔡诗柔, 张振杰. 基于知识图谱的碳酸岩型稀土矿成矿要素挖掘[J]. 地学前缘, 2025, 32(4): 262-279.
|
[25] |
陈国雄, 张越鹏, 罗磊, 等. 数据驱动斑岩型矿床时空预测模型[J]. 地学前缘, 2025, 32(4): 46-59.
|
[26] |
ZUO R, CARRANZA E J M. Machine learning-based mapping for mineral exploration[J]. Mathematical Geosciences, 2023, 55(7): 891-895.
|
[27] |
FENG Y, WANG Y, WANG C, et al. A fuzzy gold mineral prediction model integrating with knowledge-driven and data-driven: a case study of the Hatu region in Xinjiang, China[J]. Minerals, 2024, 14(12): 1209.
|
[28] |
MAO X, ZHONG H, LIU Z, et al. 3D numerical modeling for investigating structural controls on orogenic gold mineralization, Sanshandao gold belt, eastern China[J]. Natural Resources Research, 2024, 33(4): 1413-1437.
|
[29] |
袁峰, 李晓晖, 田卫东, 等. 三维成矿预测关键问题[J]. 地学前缘, 2024, 31(4): 119-128.
DOI
|
[30] |
WANG Z, LI T, ZUO R. Leucogranite mapping via convolutional recurrent neural networks and geochemical survey data in the Himalayan orogen[J]. Geoscience Frontiers, 2024, 15(1): 101715.
|
[31] |
罗杰, 周仲礼, 邹天一, 等. 基于PSO-CNN的深部找矿预测模型构建[J]. 成都理工大学学报(自然科学版), 2022, 49(6): 697-708.
|
[32] |
王永昌, 刘彩云, 熊杰, 等. 基于生成对抗网络的半监督地震波阻抗反演[J]. 现代地质, 2024, 38(6): 1585-1593.
|
[33] |
LACHOWYCZ S. Utility of artificial intelligence in geoscience[J]. Nature Geoscience, 2024, 17(10): 953-955.
|
[34] |
WU T, HE S, LIU J, et al. A brief overview of ChatGPT: the history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136.
|
[35] |
LIU A, FENG B, WANG B, et al. Deepseek-v2: a strong, economical, and efficient mixture-of-experts language model[J]. arXiv preprint, 2024. DOI: arXiv:2405.04434.
|
[36] |
TOUVRON H, LAVRIL T, IZACARD G, et al. Llama: open and efficient foundation language models[J]. arXiv preprint, 2023. DOI: arXiv:2302.139713.
|
[48] |
SHEN M, YANG Q. From mind to machine: the rise of Manus AI as a fully autonomous digital agent[J]. arXiv preprint, 2025. DOI: arXiv:2505.02024.
|
[49] |
NOVIKOV A, VŨ N, EISENBERGER M, et al. AlphaEvolve: a coding agent for scientific and algorithmic discovery[J]. arXiv preprint, 2025. DOI: arXiv:2506.13131.
|
[50] |
DURANTE Z, HUANG Q, WAKE N, et al. Agent AI: surveying the horizons of multimodal interaction[J]. arXiv preprint, 2024. DOI: arXiv:2401.03568.
|
[51] |
HÄNDLER T. A taxonomy for autonomous LLM-powered multi-agent architectures[C]. KMIS, 2023: 85-98.
|
[52] |
GAO Y, XIONG Y, GAO X, et al. Retrieval-augmented generation for large language models: a survey[J]. arXiv preprint, 2023. DOI: arXiv:2312.10997.
|
[53] |
AGTERBERG F P. Computer programs for mineral exploration[J]. Science, 1989, 245(4913): 76-81.
PMID
|
[54] |
LIU J, YANG C, LU Z, et al. Graph foundation models: concepts, opportunities and challenges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(6): 5023-5044.
|
[55] |
ALBOODY A, SLAMA R. Graph transformer mixture-of-experts (GTMoE) for 3D hand gesture recognition[C]// Intelligent systems and applications. Cham: Springer, 2024: 317-336.
|
[56] |
DAI D, DENG C, ZHAO C, et al. DeepSeekMoE: towards ultimate expert specialization in mixture-of-experts language models[J]. arXiv preprint, 2024. DOI: arXiv:2401.06066.
|