地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 235-249.DOI: 10.13745/j.esf.sf.2025.4.60
收稿日期:
2024-12-15
修回日期:
2025-04-15
出版日期:
2025-07-25
发布日期:
2025-08-04
通信作者:
*成秋明(1960—),男,教授,博士生导师,中国科学院院士,主要从事数学地球科学领域的研究。E-mail:作者简介:
张雨飞(2000—),男,硕士研究生,主要从事数学地球科学领域的研究。 E-mail:zhangyf325@mail2.sysu.edu.cn
基金资助:
ZHANG Yufei1(), ZHANG Yang1, JI Junjie1, CHENG Qiuming1,2,*(
)
Received:
2024-12-15
Revised:
2025-04-15
Online:
2025-07-25
Published:
2025-08-04
摘要:
大地热流是地球动力学研究与资源勘查的重要指标,但其测量易受气候、热液活动等因素的干扰,导致实测数据匮乏。本研究针对现有基于机器学习的热流预测模型对洋壳热流特异性考虑不足的问题,整合南海实测热流和多源地质、地球物理等数据,基于线性模型、支持向量机和XGBoost算法,通过对比引入与不引入洋壳特征(距洋中脊距离和洋壳年龄)的预测模型,揭示洋壳特征对南海热流分布的影响机制。结果显示: 洋壳特征虽与实测热流值无显著相关性,但其使预测热流在洋中脊附近呈现更显著的带状分布;且在引入洋壳特征的模型中,布格重力异常的特征重要性显著高于其他特征。基于热流值、布格重力异常和距洋中脊距离的K-means聚类分析识别出构造主导型洋壳(类型1)与岩浆主导型洋壳(类型2)区域,印证南海洋壳扩张自23.6 Ma洋中脊跃迁后扩张机制由岩浆主导向构造主导的演化特征。本研究为南海深部动力学过程提供了数据驱动的新认知框架。
中图分类号:
张雨飞, 张杨, 吉俊杰, 成秋明. 基于机器学习方法的南海洋壳大地热流预测[J]. 地学前缘, 2025, 32(4): 235-249.
ZHANG Yufei, ZHANG Yang, JI Junjie, CHENG Qiuming. Prediction of lithospheric heat flow of the South China Sea Oceanic crust based on machine learning methods[J]. Earth Science Frontiers, 2025, 32(4): 235-249.
图1 南海地形和各构造块体分区(地形数据据文献[24],构造单元界线数据、南海微板块边界和南海各构造块体据文献[25],1、2和3号洋中脊数据据文献[26])
Fig.1 Topography of the South China Sea and division of tectonic blocks. Terrain data according to reference [24]; Boundary data of tectonic units, microplate boundaries of the South China Sea, and tectonic blocks of the South China Sea are based on reference [25]; data for mid-ocean ridges 1, 2, and 3 are from reference [26].
各次级洋盆 | 数量/个 | 最大值/(mW·m-2) | 最小值/(mW·m-2) | 平均值/(mW·m-2) | 标准值/(mW·m-2) | 中位值/(mW·m-2) |
---|---|---|---|---|---|---|
西北次海盆 | 10 | 115.2 | 8.2 | 72.8 | 37.6 | 86.1 |
东部次海盆 | 30 | 152.0 | 17.2 | 88.4 | 32.6 | 91.5 |
西南次海盆 | 31 | 152.0 | 11.1 | 99.5 | 27.8 | 99.5 |
表1 南海各洋盆实测热流统计
Table 1 Statistics of measured heat flow in various ocean basins in the South China Sea
各次级洋盆 | 数量/个 | 最大值/(mW·m-2) | 最小值/(mW·m-2) | 平均值/(mW·m-2) | 标准值/(mW·m-2) | 中位值/(mW·m-2) |
---|---|---|---|---|---|---|
西北次海盆 | 10 | 115.2 | 8.2 | 72.8 | 37.6 | 86.1 |
东部次海盆 | 30 | 152.0 | 17.2 | 88.4 | 32.6 | 91.5 |
西南次海盆 | 31 | 152.0 | 11.1 | 99.5 | 27.8 | 99.5 |
编号 | 数据名称 | 数据来源 |
---|---|---|
1 | 沉积物厚度 | Straume 等[ |
2 | 海底测深 | Tozer 等[ |
3 | 布格重力异常 | Balmino等[ |
4 | 均衡重力异常 | Balmino等[ |
5 | 自由空气重力异常 | Balmino等[ |
6 | 磁异常数据 | Choi 等[ |
7 | 岩石圈厚度 | Hoggard等[ |
8 | 结晶地壳(无沉积物)厚度 | Mooney等[ |
9 | 垂向重力梯度 | Sandwell等[ |
10 | 居里点深度 | Li等[ |
11 | 地形崎岖度 | |
12 | 距海山距离 | Yesson 等[ |
13 | 距山丘距离 | Yesson 等[ |
14 | 洋壳年龄 | Seton等[ |
15 | 距洋中脊距离 |
表2 用于预测大地热流的特征及其来源数据集
Table 2 Characterization and its source datasets for the prediction of heat flow
编号 | 数据名称 | 数据来源 |
---|---|---|
1 | 沉积物厚度 | Straume 等[ |
2 | 海底测深 | Tozer 等[ |
3 | 布格重力异常 | Balmino等[ |
4 | 均衡重力异常 | Balmino等[ |
5 | 自由空气重力异常 | Balmino等[ |
6 | 磁异常数据 | Choi 等[ |
7 | 岩石圈厚度 | Hoggard等[ |
8 | 结晶地壳(无沉积物)厚度 | Mooney等[ |
9 | 垂向重力梯度 | Sandwell等[ |
10 | 居里点深度 | Li等[ |
11 | 地形崎岖度 | |
12 | 距海山距离 | Yesson 等[ |
13 | 距山丘距离 | Yesson 等[ |
14 | 洋壳年龄 | Seton等[ |
15 | 距洋中脊距离 |
图9 随机超参数训练的验证模型 (a)—超参数组合1不引入洋壳特征热流模型;(b)—超参数组合1引入洋壳特征热流模型;(c)—超参数组合2不引入洋壳特征热流模型;(d)—超参数组合2引入洋壳特征热流模型。
Fig.9 Validation model for randomized hyperparameter training
图12 类型1和类型2区域聚类各要素之间关系探究 (a)—南海洋壳区域布格重力异常与预测热流值关系;(b)—类型1南海洋壳区域布格重力异常与预测热流值密度图;(c)—类型2南海洋壳区域布格重力异常与预测热流值密度图;(d)—南海洋壳区域预测热流值与距洋中脊距离关系;(e)—类型1南海洋壳区域预测热流值与距洋中脊距离密度图;(f)—类型2南海洋壳区域预测热流值与距洋中脊距离密度图;(g)—南海洋壳区域布格重力异常与距洋中脊距离关系;(h)—类型1南海洋壳区域布格重力异常与距洋中脊距离密度图;(i)—类型2南海洋壳区域布格重力异常与距洋中脊距离密度图。
Fig.12 Exploring the relationships between elements in Type 1 and Type 2 regional clusters
[1] |
刘峰, 王贵玲, 姜光政, 等. 我国陆区大地热流测量新进展与新认识[J]. 地学前缘, 2024, 31(6): 19-30.
DOI |
[2] | KIM Y G, LEE S M, JIN Y K, et al. The stability of gas hydrate field in the northeastern continental slope of Sakhalin Island, Sea of Okhotsk, as inferred from analysis of heat flow data and its implications for slope failures[J]. Marine and Petroleum Geology, 2013, 45: 198-207. |
[3] |
GAO X, WANG K L. Strength of stick-slip and creeping subduction megathrusts from heat flow observations[J]. Science, 2014, 345(6200): 1038-1041.
DOI PMID |
[4] | HENDERSON P. Annual review of earth and planetary sciences[J]. Geochimica et Cosmochimica Acta, 1988, 52(4): 950. |
[5] |
刘金萍, 王改云, 简晓玲, 等. 北黄海东部次盆地构造热机制与成烃效应[J]. 地学前缘, 2024, 31(4): 206-218.
DOI |
[6] |
LUCAZEAU F. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8): 4001-4024.
DOI |
[7] | GRAW J H, WOOD W T, PHRAMPUS B J. Predicting marine in situ heat flow using a geospatial machine learning conformal prediction[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(6): e2023GC010913. |
[8] | LÖSING M, EBBING J. Predicting geothermal heat flow in Antarctica with a machine learning approach[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021499. |
[9] | HE J F, LI K W, WANG X W, et al. A machine learning methodology for predicting geothermal heat flow in the Bohai Bay basin, China[J]. Natural Resources Research, 2022, 31(1): 237-260. |
[10] | 周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018. |
[11] | BELL G, HEY T, SZALAY A. Beyond the data deluge[J]. Science, 2009, 323(5919): 1297-1298. |
[12] | 蒋德鑫, 姜鹍鹏, 张贺, 等. 西北太平洋边缘海热流特征研究[J]. 现代地质, 2020, 34(1): 117-129. |
[13] | 王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3): 835-850. |
[14] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, (20): 273-297. |
[15] | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794. |
[16] | MACQUEEN J B. Some methods for classification and analysis of multivariate observations[J]. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, 1966(5): 281-298. |
[17] | 栾锡武, 张亮. 南海构造演化模式: 综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 2009, 29(6): 59-74. |
[18] | LI C F, WANG P X, DIETER F, et al. Opening of the South China Sea and its implications for southeast Asian tectonics since the late Mesozoic[J]. Advances in Earth Science, 2009, 24(12): 1339-1351. |
[19] | 施小斌, 丘学林, 夏戡原, 等. 南海热流特征及其构造意义[J]. 热带海洋学报, 2003, 22(2): 63-73. |
[20] | BURTON-JOHNSON A, CULLEN A B. Continental rifting in the South China Sea through extension and high heat flow: an extended history[J]. Gondwana Research, 2023, 120: 235-263. |
[21] |
王鹏程, 李三忠, 郭玲莉, 等. 南海打开模式: 右行走滑拉分与古南海俯冲拖曳[J]. 地学前缘, 2017, 24(4): 294-319.
DOI |
[22] | ZHANG F, LIN J, ZHANG X B, et al. Asymmetry in oceanic crustal structure of the South China Sea basin and its implications on mantle geodynamics[J]. International Geology Review, 2020, 62(7/8): 840-858. |
[23] | 谢玉洪, 郑华安, 梁玉凯, 等. 南海盆地地热地质条件和资源形成因素[J]. 成都理工大学学报(自然科学版), 2023, 50(6): 647-660. |
[24] |
TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
DOI |
[25] | 邱燕, 杜文波, 鞠东, 等. 南海主要断裂(带)与构造分区[J]. 海洋地质与第四纪地质, 2025, 45(1): 136-153. |
[26] |
梁光河. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2022, 29(4): 293-306.
DOI |
[27] | FUCHS S, NORDEN B, NEUMANN F, et al. The Global Heat Flow Database: new quality scheme and data release 2023[C]// XXVIII General Assembly of the International Union of Geodesy and Geophysics. Berlin:IUGG, 2023. |
[28] |
徐行, 姚永坚, 彭登, 等. 南海西南次海盆的地热流特征与分析[J]. 地球物理学报, 2018, 61(7): 2915-2925.
DOI |
[29] | 徐行, 董淼, 陈爱华, 等. 南海海盆IODP349钻井岩心的生热元素测试与应用研究[J]. 大地构造与成矿学, 2017, 41(6): 1128-1134. |
[30] | NISSEN S S, HAYES D E, YAO B C, et al. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22447-22483. |
[31] | TAYLOR B, HAYES D E. Origin and history of the South China Sea basin[J]. Geophysical Monograph Series, 1983, 27: 23-56. |
[32] | HU L T, ZHANG P Z, HAO T Y, et al. Analysis of topography, heat flow against crustal age in the Southwest Subbasin, South China Sea[J]. International Geology Review, 2020, 62(7/8): 1081-1093. |
[33] | HASTEROK D, CHAPMAN D S, DAVIS E E. Oceanic heat flow: implications for global heat loss[J]. Earth and Planetary Science Letters, 2011, 311(3/4): 386-395. |
[34] |
施小斌, 于传海, 陈梅, 等. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3): 56-64.
DOI |
[35] | SCLATER J G, JAUPART C, GALSON D. The heat flow through oceanic and continental crust and the heat loss of the Earth[J]. Reviews of Geophysics, 1980, 18(1): 269-311. |
[36] | POLLACK H N, HURTER S J, JOHNSON J R. Heat flow from the earth’s interior: analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280. |
[37] | KUTAS R I. Heat flow, radiogenic heat and crustal thickness in southwest U.S.S.R[J]. Tectonophysics, 1984, 103(1/2/3/4): 167-174. |
[38] | FISHER A T, BECKER K. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data[J]. Nature, 2000, 403(6765): 71-74. |
[39] | LI C F, LU Y, WANG J. A global reference model of Curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7: 45129. |
[40] | CHENG Q M. Singularity of lithosphere mass density over the mid-ocean ridges and implication on floor depth and heat flow[J]. Geoscience Frontiers, 2023, 14(5): 101591. |
[41] | RÓŻYCKA M, MIGOŃ P, MICHNIEWICZ A. Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland[J]. Zeitschrift für Geomorphologie Supplement, 2017, 61(2): 61-80. |
[42] | TONTINI F C, TIVEY M A, DE RONDE C E J, et al. Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at brothers volcano caldera, southern Kermadec arc, New Zealand[J]. Geophysical Research Letters, 2019, 46(14): 8252-8260. |
[43] |
吴招才, 高金耀, 沈中延, 等. 中国东部及近海磁异常特征及大地构造意义[J]. 地学前缘, 2018, 25(1): 210-217.
DOI |
[44] | COCHRAN J R, TALWANI M. Free-air gravity anomalies in the world’s oceans and their relationship to residual elevation[J]. Geophysical Journal International, 1977, 50(3): 495-552. |
[45] | 殷秀华, 刘铁胜, 刘占坡. 均衡重力异常和地壳表、浅层地质结构[J]. 地震地质, 1993, 15(2): 149-156. |
[46] | HARPER H, TOZER B, SANDWELL D T, et al. Marine vertical gravity gradients reveal the global distribution and tectonic significance of “seesaw” ridge propagation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020017. |
[47] | STRAUME E O, GAINA C, MEDVEDEV S, et al. GlobSed: updated total sediment thickness in the world’s oceans[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772. |
[48] | BALMINO G, VALES N, BONVALOT S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 2012, 86(7): 499-520. |
[49] | DYMENT J, CHOI Y, LESUR V, et al. The world digital magnetic anomaly map: version 2.1[C]// EGU General Assembly 2020, Online, 2020: EGU 2020-22098. |
[50] | HOGGARD M J, CZARNOTA K, RICHARDS F D, et al. Global distribution of sediment-hosted metals controlled by craton edge stability[J]. Nature Geoscience, 2020, 13: 504-510. |
[51] | MOONEY W D, BARRERA-LOPEZ C, SUÁREZ M G, et al. Earth crustal model 1 (ECM1): a 1° x 1° global seismic and density model[J]. Earth-Science Reviews, 2023, 243: 104493. |
[52] | SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67. |
[53] | YESSON C, CLARK M R, TAYLOR M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(4): 442-453. |
[54] | SETON M, MÜLLER R D, ZAHIROVIC S, et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10): e2020GC009214. |
[55] | PETRELLI M, PERUGINI D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10): 81. |
[56] | KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[J]. International Joint Conference on Artificial Intelligence, 1995, 2: 1137-1143. |
[57] | DERBELA M, NOUIRI I. Intelligent approach to predict future groundwater level based on artificial neural networks (ANN)[J]. Euro-Mediterranean Journal for Environmental Integration, 2020, 5(3): 51. |
[58] | 黄磊, 陈泓君, 高红芳, 等. 南海中央海盆热流特征及成因[J]. 海洋地质前沿, 2013, 29(11): 39-43. |
[59] | CURRIE C A, HYNDMAN R D. The thermal structure of subduction zone back arcs[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8): B08404. |
[60] | CANNAT M, SAUTER D, MENDEL V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7): 605. |
[61] | KAWADA Y, YAMANO M, SEAMA N. Hydrothermal heat mining in an incoming oceanic plate due to aquifer thickening: explaining the high heat flow anomaly observed around the Japan Trench[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1580-1599. |
[62] |
MUTTER J C, KARSON J A. Structural processes at slow-spreading ridges[J]. Science, 1992, 257(5070): 627-634.
PMID |
[1] | 叶舒婉, 侯卫生, 杨玠, 汪海城, 白芸, 王永志. 三维地质智能建模研究进展[J]. 地学前缘, 2025, 32(4): 182-198. |
[2] | 肖凡, 杨华清, 唐奥, 黄旋财, 王翠翠. 基于机器学习与多源数据融合的东天山戈壁沙漠覆盖区中-酸性侵入岩岩性填图[J]. 地学前缘, 2025, 32(4): 199-212. |
[3] | 肖克炎, 李程, 唐瑞, 王瑶, 孙莉, 柳炳利, 樊铭静. 大数据智能预测评价[J]. 地学前缘, 2025, 32(4): 20-37. |
[4] | 简富源, 张子鸣, 董岳霖, 张文璟, 郝风云, 王一鸣, 王宇, 张振杰. 基于多重分形与随机森林的新疆哈巴河金矿成矿预测[J]. 地学前缘, 2025, 32(4): 78-94. |
[5] | 李金明, 张杨, 成秋明. 基于机器学习与垂向分层建模联合驱动的华北克拉通地温梯度空间分布预测[J]. 地学前缘, 2025, 32(4): 291-302. |
[6] | 匡增桂, 任金锋, 邓炜, 赖洪飞, 谢莹峰. 南海北部陆坡天然气水合物钻探发现及成藏特征[J]. 地学前缘, 2025, 32(2): 1-19. |
[7] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[8] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 陈雨核, 任金锋, 李廷微, 徐梦婕, 王笑雪, 廖远涛. 南海北部渗漏型水合物成藏系统的发育特征及其形成演化规律[J]. 地学前缘, 2025, 32(2): 77-93. |
[11] | 张必敏, 王学求, 周建, 王玮, 刘汉粮, 刘东盛, Sounthone LAOLO, Phomsylalai SOUKSAN, 谢淼, 董春放, 柳青青, 鲁岳鑫, 王浩楠, 贺彬. 老挝铜资源成矿规律与基于机器学习的远景预测[J]. 地学前缘, 2025, 32(1): 61-77. |
[12] | 王贵玲, 蔺文静. 我国陆区热状态及控热要素[J]. 地学前缘, 2024, 31(6): 1-18. |
[13] | 刘峰, 王贵玲, 姜光政, 胡圣标, 张薇, 蔺文静, 刘金辉, 张心勇, 屈泽伟, 廖传志. 我国陆区大地热流测量新进展与新认识[J]. 地学前缘, 2024, 31(6): 19-30. |
[14] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[15] | 张利军, 鲁文豪, 张建东, 彭光雄, 卜建财, 唐凯, 谢渐成, 徐质彬, 杨海燕. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||