地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 405-418.DOI: 10.13745/j.esf.sf.2025.10.30

• 特殊地貌地下水 • 上一篇    下一篇

基于机器学习的岩溶裂隙空间分布预测研究:以北京房山为例

乔小娟1,2(), 罗承可1, 柴新宇1, 于文瑾1   

  1. 1.中国科学院大学 地球与行星科学学院, 北京 101408
    2.中国科学院大学 地球系统数值模拟与应用全国重点实验室, 北京 101408
  • 收稿日期:2025-08-24 修回日期:2025-09-26 出版日期:2026-11-25 发布日期:2025-11-10
  • 作者简介:乔小娟(1982—),女,博士,副教授,研究生导师,主要从事水文地球化学与数值模拟方面的研究。E-mail: qiaoxj@ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42372298)

Prediction of fracture distribution in karst area based on machine learning method: Taking Fangshan area in Beijing as a case study

QIAO Xiaojuan1,2(), LUO Chengke1, CHAI Xinyu1, YU Wenjin1   

  1. 1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
    2. State Key Laboratory of Earth System Numerical Modeling and Application, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-08-24 Revised:2025-09-26 Online:2026-11-25 Published:2025-11-10

摘要:

岩溶裂隙发育具有高维、非线性及空间异质性特征,如何刻画裂隙的空间展布是岩溶发育规律研究的难点。以多源数据驱动的机器学习建模方法可以有效捕捉裂隙系统中隐含的非线性、非连续的特征,从而显著地提高裂隙识别与刻画的效率与精度。本研究以北京市房山张坊地区为研究对象,基于翔实的野外裂隙实测数据,系统融合了地表地形信息、区域构造背景、地层岩性分布以及地下水位等多源数据集。利用机器学习框架构建了一套综合性的定量化特征体系,该体系涵盖了断层空间影响、地层岩性组合特征、地下水埋深变化以及高精度地形衍生属性(如坡度、曲率等)等多个维度的指标。重点研究对比了支持向量回归、极致梯度提升树及随机森林这三种机器学习方法,旨在预测研究区内岩溶裂隙的发育与空间分布情况。结果表明,基于随机森林构建的预测模型表现最为优异。该模型的裂隙密度、节理走向与倾角的模拟结果与实测统计数据最符合,模型表现最为稳健,具有良好的泛化能力和方法适用性,在表达多期次裂隙发育等复杂地质过程方面具有独特优势。本研究的结果揭示,将数据驱动模型与深入的地质机理分析相融合,是突破复杂岩溶系统定量化表征与预测难题的一条有效途径。

关键词: 岩溶裂隙, 机器学习, 支持向量回归, 梯度提升树, 随机森林, 北京房山

Abstract:

The development of karst fissures is characterized by high dimensionality, nonlinearity, and spatial heterogeneity. Accurately characterizing the spatial distribution of fissures remains a challenging issue in the study of karst development patterns. Data-driven machine learning modeling methods can effectively capture the implicit nonlinear and discontinuous characteristics within fissure systems, thereby significantly improving the efficiency and accuracy of fissure identification and characterization. This study takes the Zhangfang area of Fangshan, Beijing, as its research subject. Based on detailed field-measured fissure data, it systematically integrates multi-source datasets including surface topographic information, regional tectonic background, stratigraphic lithology distribution, and groundwater levels. Using a machine learning framework, a comprehensive quantitative feature system was constructed, covering multiple dimensions such as spatial fault influence, stratigraphic lithological characteristics, variations in groundwater depth, and high-precision topographic derivatives (e.g., slope, curvature). The study focused on comparing three machine learning methods—Support Vector Regression, Extreme Gradient Boosting, and Random Forest-to predict the development and spatial distribution of karst fissures in the study area. The results indicate that the prediction model based on Random Forest performed the best. The simulation results for fissure density, joint orientation, and dip angle were most consistent with measured statistical data, demonstrating the most robust model performance, strong generalization capability, and high method applicability. It exhibited unique advantages in representing complex geological processes such as multi-phase fissure development. The findings of this study reveal that integrating data-driven models with in-depth geological mechanism analysis is an effective approach to overcoming the challenges in the quantitative characterization and prediction of complex karst systems.

Key words: karst fractures, machine learning, support vector regression, gradient boosting trees, random forest, Fangshan area in Beijing

中图分类号: