地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 483-499.DOI: 10.13745/j.esf.sf.2025.10.19

• 水文地质新技术新方法 • 上一篇    下一篇

机器学习在地下水科学中的前沿进展与挑战

康金正1(), 莫绍星1, 康学远2, 党婧萱1, 程迟吉太1, 徐培杰1, 施小清1,*()   

  1. 1.南京大学 地球科学与工程学院, 表层地球化学教育部重点实验室, 江苏 南京 210023
    2.科罗拉多矿业大学 地质学和地质工程系, 美国 科罗拉多州戈尔登 80401
  • 收稿日期:2025-04-09 修回日期:2025-08-23 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *施小清,(1979—),男,教授,主要从事污染水文地质学的教学和科研工作。E-mail: shixq@nju.edu.cn
  • 作者简介:康金正,(2002—),男,硕士研究生,主要从事地下水数值模拟研究工作。E-mail: 502024290073@smail.nju.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(42272276);国家自然科学基金面上项目(42472318)

Frontier advances and challenges of machine learning in groundwater science

KANG Jinzheng1(), MO Shaoxing1, KANG Xueyuan2, DANG Jingxuan1, CHENG Chijitai1, XU Peijie1, SHI Xiaoqing1,*()   

  1. 1. Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
    2. Geology and Geological Engineering Department, Colorado School of Mines, Golden, Colorado, 80401, USA
  • Received:2025-04-09 Revised:2025-08-23 Online:2026-01-25 Published:2025-11-10

摘要:

地下水是全球淡水资源的重要组成部分,是保障可用水资源安全、生态系统稳定与人类社会可持续发展的关键支撑。作为一个深埋地下、动态变化且高度非均质的自然系统,地下水系统的观测、建模与管理长期面临诸多挑战,例如监测点位分布稀疏和分布不均、物理过程高度非线性等。近年来,随着以机器学习方法为主的人工智能技术在特征提取、高维非线性建模和优化求解等多方面展现出的巨大潜力,推动地下水科学正逐步迈向数据驱动与智能建模相融合的新阶段。本文围绕地下水科学中的三类核心科学问题——要素刻画、过程建模与管理优化,系统性综述了机器学习在地下水研究中的典型应用场景与前沿进展,涵盖含水层结构刻画、水位水量与水质分析、正演预测、反向模拟、机制融合与地下水水资源管理等,并在此基础上归纳了以“科学问题-数据驱动-模型选取-结果分析”为核心的机器学习方法在地下水科学中的研究框架。针对当前研究仍面临的若干关键挑战,如物理约束融合不足、模型泛化能力弱、结果可解释性差等问题,本文进一步探讨了未来的发展方向,包括多源异构数据融合、物理先验嵌入与因果推理方法等。本文旨在为地下水科学中机器学习方法的应用提供研究框架,并为融合机器学习的地下水智能化发展进行展望。

关键词: 地下水科学, 机器学习方法, 研究框架, 前沿进展

Abstract:

Groundwater is a vital component of the global freshwater supply and plays a critical role in ensuring the water resource security,maintaining ecosystem stability,and supporting the sustainable development of human society. As a deeply buried,dynamically evolving,and highly heterogeneous natural system,groundwater poses persistent challenges in observation,modeling,and management,primarily due to the sparsity and uneven distribution of monitoring points and the strong nonlinearity of subsurface physical processes. In recent years,the rapid advancement of artificial intelligence—particularly machine learning—has demonstrated significant potential in feature extraction,high-dimensional nonlinear modeling,and optimization,thereby driving groundwater science into a new paradigm that integrates data-driven approaches with intelligent modeling. This paper provides a comprehensive review of machine learning applications in addressing three core scientific problems in groundwater research: element characterization,process modeling,and management optimization. Key topics include aquifer structure identification,groundwater level,storage and quality analysis,forward simulation,inverse modeling,physics-informed modeling,and groundwater resource management. Based on these developments,a generalized research framework is proposed,structured around the cycle of “scientific problem-data-driven modeling-model selection-result interpretation.” Given existing challenges such as limited incorporation of physical constraints,weak generalization capability,and poor model interpretability,this study also discusses future directions,including the integration of multi-source heterogeneous data,embedding of physical priors,and the use of causal inference methods. This work aims to provide a conceptual and methodological foundation for the application of machine learning in groundwater science and to outline pathways toward developing intelligent and sustainable groundwater systems.

Key words: groundwater science, machine learning methods, research framework, frontier advances

中图分类号: