地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 419-431.DOI: 10.13745/j.esf.sf.2025.10.1

• 特殊地貌地下水 • 上一篇    下一篇

基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究

黄林显1(), 徐征和1, 支传顺1, 李双2, 刘治政2, 邢立亭1, 朱恒华3, 王晓玮3, 毕雯雯4, 胡晓农1,*()   

  1. 1.济南大学 水利与环境学院, 山东 济南 250022
    2.山东省地质调查院, 山东 济南 250013
    3.山东省国土空间生态修复中心, 山东 济南 250014
    4.山东省地矿工程勘察院(山东省地质矿产勘查开发局八○一水文地质工程地质大队), 山东 济南 250014
  • 收稿日期:2025-06-20 修回日期:2025-10-10 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *胡晓农(1962—),男,教授,博士生导师,主要从事海岸带水文地质及岩溶地质方面的研究工作。E-mail: stu_huxn@ujn.edu.cn
  • 作者简介:黄林显(1982—),男,副教授,硕士生导师,主要从事岩溶水文地质研究工作。E-mail: stu_huanglx@ujn.edu.cn
  • 基金资助:
    国家自然科学基金项目(42577088);国家自然科学基金重点项目(42430712);山东省自然科学基金项目(ZR2024MD009)

Research on groundwater level prediction of northern karst spring of China based on LSTM-Attention neural network

HUANG Linxian1(), XU Zhenghe1, ZHI Chuanshun1, LI Shuang2, LIU Zhizheng2, XING Liting1, ZHU Henghua3, WANG Xiaowei3, BI Wenwen4, HU Xiaonong1,*()   

  1. 1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
    2. Shandong Institute of Geological Survey, Jinan 250013, China
    3. Shandong Provincial Territorial Spatial Ecological Restoration Center, Jinan 250014, China
    4. Shandong Provincial Geo-mineral Engineering Exploration Institute (No.801 Hydrogeological and Engineering Exploration Brigade of Shandong Provincial Bureau of Geology and Mineral Exploration and Development), Jinan 250014, China
  • Received:2025-06-20 Revised:2025-10-10 Online:2026-01-25 Published:2025-11-10

摘要:

岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change, Seasonality, and Trend) 算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。

关键词: 北方岩溶, 水位预测, 多变量模拟, LSTM_Attention神经网络

Abstract:

Karst groundwater serves as a critical water source in northern karst regions of China, and accurately forecasting its water level dynamics is essential for the scientific management and conservation of groundwater resources. However, the inherent strong heterogeneity and anisotropy of karst aquifer systems often result in non-stationary and nonlinear groundwater fluctuations, posing significant challenges for reliable prediction and frequently leading to considerable errors. This study proposes a multivariate groundwater level forecasting model for the Baotu Spring, based on the integration of an attention mechanism and a long short-term memory (LSTM) neural network. The model is trained and validated using daily data from 2013 to 2024, including precipitation (as a proxy for recharge), vapor pressure, air temperature, and groundwater extraction volume (as indicators of discharge). The main findings are as follows: (a) The BEAST (Bayesian Estimator of Abrupt Change, Seasonality, and Trend) algorithm was applied to the 1958-2024 Baotu Spring groundwater level time series, identifying four abrupt change points. Based on these, the time series was segmented into four distinct stages. (b) Cross-correlation analysis revealed a time lag of approximately 2-3 months between precipitation and groundwater level variations, suggesting a strong dynamic coupling between the two variables. (c) The proposed model incorporates multiple input variables (precipitation, vapor pressure, temperature, and extraction volume). The interplay among these variables enhances model interpretability and contributes to improved forecasting accuracy. (d) Daily temperature data were smoothed using a sinusoidal fitting function, which effectively reduces measurement noise and improves prediction performance. (e) Compared to standard LSTM and gated recurrent unit (GRU) models, the LSTM-Attention model demonstrates superior predictive capability. By leveraging the attention mechanism to prioritize influential features, it achieved a root mean square error (RMSE) of 0.13 m and a coefficient of determination (R2) of 0.94. In summary, the LSTM-Attention-based forecasting model exhibits robust accuracy and stability, offering valuable insights into the precise prediction of groundwater dynamics in karst environments.

Key words: northern karst, prediction of groundwater dynamics, multivariate modeling, LSTM-Attention neural network

中图分类号: