地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 63-79.DOI: 10.13745/j.esf.sf.2025.10.33

• 水岩相互作用及效应 • 上一篇    下一篇

基于机器学习的河南省平原区原生劣质地下水分布预测

于福荣1(), 李蕊1, 李志萍1,2,*(), 吴林1, 刘中培1   

  1. 1.华北水利水电大学, 河南 郑州 450046
    2.河南水利与环境职业学院, 河南 郑州 450008
  • 收稿日期:2025-05-20 修回日期:2025-09-29 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *李志萍(1971—),女,教授,主要研究方向为地下水污染防治与修复。E-mail: lizhiping@ncwu.edu.cn
  • 作者简介:于福荣(1982—),女,教授,主要研究方向为地下水污染防治与修复。E-mail: yufurong@ncwu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41402225);国家自然科学基金项目(41972261);河南省面上科学基金项目(252300420294);河南省科技攻关项目(242102320371)

Distribution prediction of natural low-quality groundwater in the plains of Henan Province based on machine learning

YU Furong1(), LI Rui1, LI Zhiping1,2,*(), WU Lin1, LIU Zhongpei1   

  1. 1. North China University of Water Resources and Electric Power, Zhengzhou 450046, China
    2. Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
  • Received:2025-05-20 Revised:2025-09-29 Online:2026-01-25 Published:2025-11-10

摘要: 地下水作为全球超20亿人饮用水的重要来源,其水质安全与人类健康和生态系统密切相关。原生劣质地下水(geogenic contaminated groundwater, GCG)是由于地球演化形成的地下水组分超标现象,主要表现为砷、氟、碘含量超标。受地质构造、水文地球化学和人类活动影响,原生劣质地下水分布呈现区域差异和局部突变,其成因机制和防控策略研究对保障水资源安全至关重要。本文以河南省为典型研究区,综合运用Gibbs图等方法解析研究区地下水水化学特征及主控因素,明确原生劣质地下水的分布原因;结合地方病分布数据,探究原生劣质地下水与病区的关联性,并引入机器学习模型实现原生劣质地下水空间分布的精准预测,最终基于上述研究划定地下水健康风险管控区。结果表明:研究区原生劣质地下水集中分布于豫东平原及黄河沿岸区域,且潜水原生劣质组分超标程度显著高于承压水;弱碱性还原环境是原生劣质地下水形成的关键水文地球化学条件,岩石风化溶解与强烈蒸发作用共同主导了特征离子的富集过程;原生劣质地下水分布与地方病区存在一定空间关联性;地下水中砷、氟、碘均表现出明显的空间聚集性,其中高-高(HH)聚类区(即高砷、高氟、高碘地下水叠加区)与机器学习模型识别的高风险区域高度吻合。因此,在濮阳市、新乡市、周口市、开封市及商丘市等重点区域科学划定健康风险保护区,对保障当地居民用水安全具有重要现实意义。

关键词: 砷氟碘, 地下水化学, 健康风险, 地方病, 河南省

Abstract:

As a crucial drinking water source for over two billion people worldwide, groundwater quality is intrinsically linked to human health and ecosystem integrity. Geogenic groundwater contamination (GGC), characterized by excessive levels of arsenic (As), fluoride (F), and iodine (I), originates from natural geological processes. The distribution of GGC, influenced by geological structures, hydrogeochemistry, and anthropogenic activities, exhibits regional patterns with local complexities. Research into its formation mechanisms and control strategies is therefore critical for ensuring water security. Using Henan Province as a case study, this research employed methods including Gibbs diagrams to analyze groundwater hydrochemical characteristics and their controlling factors, thereby identifying the origins of GGC. The correlation between GGC and the distribution of endemic diseases was investigated. Furthermore, machine learning models were introduced to achieve accurate spatial prediction of GGC. Subsequently, health risk control zones were proposed. The results indicate that: (1) GGC in the study area is concentrated in the Eastern Henan Plain and the regions along the Yellow River, with contamination levels in phreatic water being significantly higher than those in confined water; (2) Weakly alkaline and reducing environments represent key hydrogeochemical conditions for GGC formation, where rock weathering and dissolution combined with intense evaporation govern the enrichment of characteristic ions; (3) A spatial correlation exists between GGC distribution and endemic disease areas; (4) Arsenic, fluoride, and iodine in groundwater all exhibit significant spatial aggregation. Notably, the high-high (HH) clusters, indicating areas with co-occurrence of high arsenic, fluoride, and iodine, show strong agreement with the high-risk zones predicted by the machine learning models. Based on these findings, scientifically delineating protection zones in key regions such as Puyang, Xinxiang, Zhoukou, Kaifeng, and Shangqiu cities holds significant practical importance for ensuring local residents’ drinking water safety.

Key words: arsenic, fluorine and iodine, groundwater chemistry, health risk, endemic disease, Henan Province

中图分类号: