| [1] |
管清花, 李福林, 陈学群, 等. 济南趵突泉泉域泉群生态基流量研究[J]. 中国农村水利水电, 2021(4): 75-80, 91.
|
| [2] |
邢立亭, 周娟, 宋广增, 等. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3): 260-272.
DOI
|
| [3] |
袁学圣, 邢立亭, 赵振华, 等. 济南四大泉群流量衰减过程及其指示意义[J]. 干旱区资源与环境, 2022, 36(7): 126-132.
|
| [4] |
孙虹洁, 赵振华, 黄林显, 等. 多变量LSTM神经网络模型在地下水位预测中的应用[J]. 人民黄河, 2022, 44(8): 69-75.
|
| [5] |
WUNSCH A, LIESCH T, CINKUS G, et al. Karst spring discharge modeling based on deep learning using spatially distributed input data[J]. Hydrology and Earth System Sciences, 2022, 26(9): 2405-2430.
DOI
URL
|
| [6] |
周长松, 邹胜章, 冯启言, 等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50.
DOI
|
| [7] |
陈发家, 肖琼, 胡祥云, 等. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459.
DOI
|
| [8] |
张郑贤, 刘艺, 张锋贤. 基于时间序列模型的济南趵突泉地下水位预测[J]. 中国水利水电科学研究院学报, 2019, 17(1): 51-59.
|
| [9] |
姜宝良, 陈宁宁, 李小建, 等. 河南某大型裂隙岩溶水源地地下水位动态分析[J]. 水文地质工程地质, 2021, 48(2): 37-43.
|
| [10] |
肖竞, 万军伟, 成建梅, 等. MODFLOW-CFPv2模型在岩溶隧道突涌水及对地下水环境影响中的应用:以云南鹤庆锰矿沟岩溶水系统为例[J]. 地质科技通报, 2024, 43(3): 301-310.
|
| [11] |
李志超, 姜宝良, 潘登, 等. 灰色理论在新乡百泉泉水流量动态分析中的应用[J]. 水文地质工程地质, 2023, 50(2): 34-43.
|
| [12] |
RAHBAR A, MIRARABI A, NAKHAEI M, et al. A comparative analysis of data-driven models (SVR, ANFIS, and ANNs) for daily karst spring discharge prediction[J]. Water Resources Management, 2022, 36(2): 589-609.
DOI
|
| [13] |
许亮, 郭高轩. 典型北方山前岩溶泉历史流量序列重建研究[J]. 水文, 2023, 43(3): 88-92.
|
| [14] |
齐欢. 济南市趵突泉与白泉地下水位相关性研究[J]. 水文, 2020, 40(4): 79-84, 32.
|
| [15] |
LI J, LU W, LUO J. Groundwater contamination sources identification based on the long-short term memory network[J]. Journal of Hydrology, 2021, 601: 126670.
DOI
URL
|
| [16] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI
PMID
|
| [17] |
WU X, WANG H Y, SHI P, et al. Long short-term memory model-a deep learning approach for medical data with irregularity in cancer prediction with tumor markers[J]. Computers in Biology and Medicine, 2022, 144: 105362.
DOI
URL
|
| [18] |
WUNSCH A, LIESCH T, BRODA S. Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)[J]. Hydrology and Earth System Sciences, 2021, 25(3): 1671-1687.
DOI
URL
|
| [19] |
于苗, 邢立亭, 吴吉春, 等. 基于时间序列分形的济南岩溶大泉动态研究[J]. 地质学报, 2020, 94(8): 2509-2519.
|
| [20] |
孙斌, 彭玉明. 济南泉域边界条件、水循环特征及水环境问题[J]. 中国岩溶, 2014, 33(3): 272-279.
|
| [21] |
侯新宇, 邢立亭, 孙蓓蓓, 等. 济南市岩溶水系统分级及市区与东西郊的水力联系[J]. 济南大学学报(自然科学版), 2014(28):300-305.
|
| [22] |
ZHAO K, WULDER M A, HU T, et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm[J]. Remote sensing of Environment, 2019, 232: 111181.
DOI
URL
|
| [23] |
迟光耀, 邢立亭, 侯新宇, 等. 基于小波分析与Mann-Kendall法的岩溶大泉动态研究[J]. 中国岩溶, 2018, 37(4):515-526.
|
| [24] |
MA S, DING W, ZHENG Y, et al. Edge-cloud collaboration-driven predictive planning based on LSTM-attention for wastewater treatment[J]. Computers & Industrial Engineering, 2024, 195: 110425.
DOI
URL
|
| [25] |
YANG Y, HAN L, QIU C, et al. A short-term wave energy forecasting model using two-layer decomposition and LSTM-attention[J]. Ocean Engineering, 2024, 299: 117279.
DOI
URL
|
| [26] |
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(增刊1): 1-6.
|
| [27] |
SHEWALKAR A, NYAVANANDI D, LUDWIG S A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9(4): 235-245.
DOI
URL
|
| [28] |
SHEN G, TAN Q, ZHANG H, et al. Deep learning with gated recurrent unit networks for financial sequence predictions[J]. Procedia Computer Science, 2018, 131: 895-903.
DOI
URL
|
| [29] |
LI W, WU H, ZHU N, et al. Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU)[J]. Information Processing in Agriculture, 2021, 8(1): 185-193.
DOI
URL
|