地学前缘 ›› 2021, Vol. 28 ›› Issue (5): 59-67.DOI: 10.13745/j.esf.sf.2021.2.10
收稿日期:
2020-04-20
修回日期:
2020-08-20
出版日期:
2021-09-25
发布日期:
2021-10-29
通信作者:
马腾
作者简介:
刘妍君(1990—),女,博士后,主要研究方向为低渗透介质水-岩相互作用、物理模拟技术等。E-mail: liuyanjun@cug.edu.cn
基金资助:
LIU Yanjun(), MA Teng*(
), DU Yao, LIU Rui
Received:
2020-04-20
Revised:
2020-08-20
Online:
2021-09-25
Published:
2021-10-29
Contact:
MA Teng
摘要:
弱透水层与含水层相互作用是国际水文地质学界关注的热点问题,特别是黏性土弱透水层与孔隙含水层的相互作用。近年来,在自然沉积、过量开采地下水、现代化农业机械与建筑业重型机械应用等自然与人为活动影响下,黏土弱透水层会发生有效应力增加、孔隙结构变形和孔隙度减少、渗透性降低、溶解氧和贮水能力减少以及侧向和垂向排水等的压实作用,导致地下水污染、地面沉降等环境问题的发生。本文重点介绍了黏性土弱透水层压实作用的原理,分析了地下水系统中4种不同状态下沉积物压实与孔隙流体压力的关系,基于压实物理模拟和数值模拟两个方面对压实作用的研究方法与技术进行了系统总结,随后探讨了压实作用下黏性土弱透水层对地下水水量与水质的影响,并对此研究的发展趋势及其在地球科学、环境科学等研究领域的潜在应用提出了展望。
中图分类号:
刘妍君, 马腾, 杜尧, 刘锐. 黏性土弱透水层压实作用:原理、技术及其水文地质意义[J]. 地学前缘, 2021, 28(5): 59-67.
LIU Yanjun, MA Teng, DU Yao, LIU Rui. Compaction of clay aquitard: Principle, technology and hydrogeological significanc[J]. Earth Science Frontiers, 2021, 28(5): 59-67.
[1] | 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2011. |
[2] |
NEUZIL C E. Groundwater flow in low-permeability environments[J]. Water Resources Research, 1986, 22(8):1163-1195.
DOI URL |
[3] |
XUE Y Q, ZHANG Y, YE S J, et al. Land subsidence in China[J]. Environmental Geology, 2005, 48(6):713-720.
DOI URL |
[4] | 李平, 金奕潼, 赖建英, 等. 负压条件下土体渗流固结特性研究综述[J]. 河海大学学报(自然科学版), 2016, 44(2):115-121. |
[5] | WEAVER C E. Clays, muds, and shales[M]. Amsterdam: Elsevier, 1989. |
[6] | MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. Hoboken: John Wiley & Sons, 2005. |
[7] |
HUBERT F, CANER L, MEUNIER A, et al. Advances in characterization of soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting[J]. European Journal of Soil Science, 2009, 60(6):1093-1105.
DOI URL |
[8] | HOLTZ R D, KOVACS W D, SHEAHAN T C. An introduction to geotechnical engineering[M]. 2nd ed. Upper Saddle River: Prentice-Hall, 2010. |
[9] |
BLATT H. Determination of mean sediment thickness in the crust: a sedimentological method[J]. Geological Society of America Bulletin, 1970, 81(1):255-262.
DOI URL |
[10] | MACKENZIE F T, GARRELS R M. Evolution of sedimentary rocks[M]. New York: Norton, 1971. |
[11] | HANTUSH M S, JACOB C E. Plane potential flow of ground water with linear leakage[J]. Eos, Transactions American Geophysical Union, 1954, 35(6):917-936. |
[12] |
CHIODINI G F, FRONDINI D M, KERRICK J, et al. Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing[J]. Chemical Geology, 1999, 159(1/2/3/4):205-222.
DOI URL |
[13] |
LOVE A J, HERCZEG A L, SAMPSON L, et al. Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia[J]. Water Resources Research, 2000, 36(6):1561-1574.
DOI URL |
[14] |
CHEN C M, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23):13751-13759.
DOI URL |
[15] |
BEYLICH A, OBERHOLZER H R, SCHRADER S, et al. Evaluation of soil compaction effects on soil biota and soil biological processes in soils[J]. Soil and Tillage Research, 2010, 109(2):133-143.
DOI URL |
[16] |
PARKER B L, CHAPMAN S W, GUILBEAULT M A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation[J]. Journal of Contaminant Hydrology, 2008, 102(1/2):86-104.
DOI URL |
[17] | WANG Y, JIAO J J, CHERRY J A, et al. Contribution of the aquitard to the regional ground water hydrogeochemistry of the underlying confined aquifer in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 461/462:663-671. |
[18] |
BOURG A C M, BERTIN C. Biogeochemical processes during the infiltration of river water into an alluvial aquifer[J]. Environmental Science & Technology, 1993, 27(4):661-666.
DOI URL |
[19] |
LIU C X, WILLIAM P B. Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware[J]. Water Resources Research, 1999, 35(7):1975-1985.
DOI URL |
[20] | TEATINI P, TOSI L, STROZZI T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8). https://doi.org/10.1029/2010JB008122. |
[21] |
ZOCCARATO C, MINDERHOUD P S, TEATINI P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam[J]. Scientific Reports, 2018, 8(1):11437.
DOI URL |
[22] | 刘国勇, 金之钧, 张刘平. 碎屑岩成岩压实作用模拟实验研究[J]. 2006, 24(3):407-413. |
[23] |
WICKS C M, HERMAN J S. The effect of a confining unit on the geochemical evolution of ground water in the Upper Floridan aquifer system[J]. Journal of Hydrology, 1994, 153(1):139-155.
DOI URL |
[24] |
KONIKOW L F, KENDY E. Groundwater depletion: a global problem[J]. Hydrogeology Journal, 2005, 13(1):317-320.
DOI URL |
[25] | 周志芳, 徐海洋. 一种实验确定弱透水层水文地质参数的原理与方法[J]. 水文地质环境地质, 2014, 41(5):1-4. |
[26] |
GALLOWAY D L, HUDNUT K W, INGEBRITSEN S E, et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585.
DOI URL |
[27] |
SU C, CHEN Z Y, CHEN J, et al. Mechanics of aquitard drainage by aquifer-system compaction and its implications for water-management in the North China Plain[J]. Journal of Earth Science, 2014, 25(3):598-604.
DOI URL |
[28] | GALLOWAY D L, JONES D R, INGEBRITSEN S E. Land subsidence in the United States[M]. Reston: US Geological Survey, 1999. |
[29] |
OVANDO-SHELLEY E, OSSA A, ROMO M P. The sinking of Mexico City: its effects on soil properties and seismic response[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(4):333-343.
DOI URL |
[30] | SHI C X, ZHANG D, YOU L Y, et al. Land subsidence as a result of sediment consolidation in the Yellow River delta[J]. Journal Coast Research, 2007, 23(1):173-181. |
[31] | TERZAGHI K. Principles of soil mechanics: IV settlement and consolidation of clay[J]. Engineering News-Record, 1925, 95(3):874-878. |
[32] |
MEINZER O E. Compressibility and elasticity of artesian aquifers[J]. Economic Geology, 1928, 23(3):263-291.
DOI URL |
[33] | BENHAMIDA A, DJERAN-MAIGRE I, DUMONTET H, et al. Clay compaction modelling by homogenization theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(7/8):996-1005. |
[34] | IRELAND R L, POLAND J F, RILEY F S. Land subsidence in the San Joaquin Valley, California, as of 1980[M]. Washington: US Government Printing Office, 1984. |
[35] | HANSON R T. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona[M]. Reston: US Geological Survey, 1989. |
[36] | SNEED M, GALLOWAY D L. Aquifer-system compaction and land subsidence: measurements, analyses, and simulations: the Holly site, Edwards Air Force Base, Antelope Valley, California[M]. Reston: US Geological Survey, 2000. |
[37] | POTTER P E, MAYNARD J B, DEPETRIS P J. Mud and mudstones: introduction and overview[M]. New York: Springer, 2005. |
[38] | 金振民. 我国高温高压实验研究进展和展望[J]. 地球物理学报, 1997, 40(增刊1):70-81. |
[39] | 曾贻善. 实验地球化学[M]. 2版. 北京: 北京大学出版社, 2003. |
[40] | 施良骐, 宋瑞卿, 吴秀泉. 气液两用高温高压岩石三轴实验容器的研制[J]. 岩石力学与工程学报, 1986, 5(3):301-308. |
[41] | 周永胜, 何昌荣. 大陆岩石圈流变研究进展与高温高压流变实验现状[J]. 地球物理学进展, 2004, 19(2):246-254. |
[42] | 孙悦, 毕延, 董越, 等. 六面顶压机集中控制系统的组态设计[J]. 高压物理学报, 2003, 17(3):235-240. |
[43] |
GUTIERREZ M, WANGEN M. Modeling of compaction and overpressuring in sedimentary basins[J]. Marine and Petroleum Geology, 2005, 22(3):351-363.
DOI URL |
[44] | BURLEY S D. Models of burial diagenesis for deep exploration plays in Jurassic fault traps of the Central and Northern North Sea[C]//Geological Society, London, Petroleum Geology Conference Series. London: Geological Society, 1993, 4(1):1353-1375. |
[45] |
ENGLAND W A, MACKENZIE A S, MANN D M, et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, 1987, 144(2):327-347.
DOI URL |
[46] |
BJØRLYKKE K, HØEG K. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins[J]. Marine and Petroleum Geology, 1997, 14(3):267-276.
DOI URL |
[47] |
VANBALEN R T, SKAR T. The influence of faults and intraplatestresses on the overpressure evolution of the Halten Terrace, mid-Norwegian margin[J]. Tectonophysics, 2000, 320(3/4):331-345.
DOI URL |
[48] |
LEWAN M D, ROY S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry, 2011, 42(1):31-41.
DOI URL |
[49] | SANDBAEKKEN G, BERRE T, LACASSE S. Oedometer testing at the Norwegian Geotechnical Institute[M//YONG R, TOWNSEND F. Consolidation of soils: testing and evaluation. ]West Conshohocken: ASTM International, 1986. |
[50] |
MONDOL N H, BJØRLYKKE K, JAHREN J, et al. Experimental mechanical compaction of clay mineral aggregates: changes in physical properties of mudstones during burial[J]. Marine and Petroleum Geology, 2007, 24(5):289-311.
DOI URL |
[51] |
LANGROUDI A A, YASROBI S S. Drainage controlled uniaxial swelling cell[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(4):357-364.
DOI URL |
[52] |
KOOCHAK Z M, MONDOL N H, JAHREN J. Experimental mechanical compaction of sands and sand-clay mixtures: a study to investigate evolution of rock properties with full control on mineralogy and rock texture[J]. Geophysical Prospecting, 2016, 64(4):915-941.
DOI URL |
[53] | BISHOP A W. The experimental study of partly saturated soil in the triaxial apparatus[C]//Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. Paris: Dunod, 1961, 1:13-21. |
[54] |
CUI Y J, DELAGE P. Yeilding and plastic behaviour of an unsaturated compacted silt[J]. Géotechnique, 1996, 46(2):291-311.
DOI URL |
[55] |
TOYOTA H, SAKAI N, NISHIMURA T. Effects of stress history due to unsaturation and drainage condition on shear properties of unsaturated cohesive soil[J]. Soils and Foundations, 2001, 41(1):13-24.
DOI URL |
[56] |
NG C W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(3):757-764.
DOI URL |
[57] | YIN J H. A double cell triaxial system for continuous measurement of volume changes of an unsaturated or saturated soil specimen in triaxial testing[J]. Geotechnical Testing Journal, 2003, 26(3):353-358. |
[58] | SIVAKUMAR R, SIVAKUMAR V, BLATZ J, et al. Twin-cell stress path apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 2005, 29(2):175-179. |
[59] | ALABDULLAH J, LINS Y, SCHANZ T. Shear strength of unsaturated sand under plane strain conditions[C]//BUZZI O, FITYUS S, SHENG D. Proceeding of the 4th Asia-Pacific Conference on Unsaturated Soils. London: Taylor & Francis, 2009: 129-133. |
[60] |
NEVEUX L, GRGIC D, CARPENTIER C, et al. Experimental simulation of chemomechanical processes during deep burial diagenesis of carbonate rocks[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2):984-1007.
DOI URL |
[61] | DHATT G, LEFRANÇOIS E, TOUZOT G. Finite element method[M]. Hoboken: John Wiley & Sons, 2012. |
[62] | GLUYAS J, CADE C A. Prediction of porosity in compacted sands[M]//KUPECZ J A, GLUYAS J, BLOCH S. Reservoir quality prediction in sandstones and carbonates. Tulsa: American Association of Petroleum Geologists, 1997, 69:19-28. |
[63] | 林承焰, 王文广, 董春梅, 等. 砂岩压实作用研究现状及进展[J]. 沉积学报, 2020, 38(3):538-553. |
[64] | COLOMBO I, NOBILE F, PORTA G, et al. Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328:122-146. |
[65] | ATHY L F. Density, porosity, and compaction of sedimentary rock[J]. American Association of Petroleum Geologists Bulletin, 1930, 14(1):1-24. |
[66] |
EHRENBERG S N, NADEAU P H, STEEN Ø. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10):1281-1296.
DOI URL |
[67] |
FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geoscience, 2013, 17(1):25-42.
DOI URL |
[68] |
FAWAD M, MONDOL N H, JAHREN J, et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition[J]. Geophysical Prospecting, 2011, 59(4):697-720.
DOI URL |
[69] |
NOORAIEPOUR M, MONDOL N H, HELLEVANG H, et al. Experimental mechanical compaction of reconstituted shale and mudstone aggregates: investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences[J]. Marine and Petroleum Geology, 2017, 80:265-292.
DOI URL |
[70] | LIU Y, MA T, CHEN J, et al. Contribution of clay-aquitard to aquifer iron concentrations and water quality[J]. Science of The Total Environment, 2020, 741:140061. |
[71] |
HE J, MA T, DENG Y M, et al. Environmental geochemistry of highly arsenical groundwater at western Hetao plain, Inner Mongolia[J]. Frontiers of Earth Science in China, 2009, 3(1):63-72.
DOI URL |
[72] |
WANG Y X, MA T, RYZHENKO B N, et al. Model for the formation of arsenic contamination in groundwater. 1. Datong Basin, China[J]. Geochemistry International, 2009, 47(7):713-724.
DOI URL |
[73] | MOZUMDER M R H, MICHAEL H A., MIHAJLOV I, et al. Origin of groundwater arsenic in a rural Pleistocene aquifer in Bangladesh depressurized by distal municipal pumping[J]. Water Resources Research, 2020, 56(7): e2020WR027178. |
[74] |
MIHAJLOV I, MOZUMDER M R H, BOSTICK B C , et al. Arsenic contamination of Bangladesh aquifers exacerbated by clay layers[J]. Nature Communications, 2020, 11(1):1-9.
DOI URL |
[75] | 罗小龙. 含水率对黏性土体力学强度的影响[J]. 岩土工程界, 2002, 7(1):52-53. |
[76] | 王大纯, 张人权. 孔隙承压地下水的资源评价和地面沉降的关系[J]. 水文地质工程地质, 1981, 8(3):1-3, 8. |
[77] | SNEED M, BRANDT J T, SOLT M. Land subsidence along the California Aqueduct in west-central San Joaquin Valley, California, 2003-10[R]. Reston: US Geological Survey, 2018. |
[78] | POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Science, 2008, 454(7203):505-508. |
[79] |
CHAUSSARD E, FARR T G. A new method for isolating elastic from inelastic deformation in aquifer systems: application to the San Joaquin Valley, CA[J]. Geophysical Research Letters, 2019, 46(19):10800-10809.
DOI URL |
[80] | GALLOWAY D, RILEY F S . San Joaquin Valley, California: largest human alteration of the Earth’s surface[M]. Menlo Park: US Government Printing Office, 2019, 1182:23-34. |
[81] |
SHI M, GAO Z, WAN L, et al. Desalination of saline groundwater by a weakly permeable clay stratum: a case study in the North China Plain[J]. Environmental Earth Sciences, 2019, 78(17):547.
DOI URL |
[82] |
AUDET D M. Mathematical modelling of gravitational compaction and clay dehydration in thick sediment layers[J]. Geophysical Journal International, 1995, 122(1):283-298.
DOI URL |
[83] |
RUSER R, FLESSA H, RUSSOW R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2):263-274.
DOI URL |
[84] |
LIU Y, MA T, DU Y. Compaction of muddy sediment and its significance to groundwater chemistry[J]. Procedia Earth and Planetary Science, 2017, 17:392-395.
DOI URL |
[85] | DASGUPTA T, MUKHERJEE S. Compaction of sediments and different compaction models[M]//SWENNEN R. Sediment Compaction and Applications in Petroleum Geoscience. Berlin: Springer, 2020: 1-8. |
[86] |
REDDY K R, URBANEK A, KHODADOUST A P. Electroosmotic dewatering of dredged sediments: bench-scale investigation[J]. Journal of Environmental Management, 2006, 78(2):200-208.
DOI URL |
[87] |
CARMAN R, RAHM L. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper[J]. Journal of Sea Research, 1997, 37(1/2):25-47.
DOI URL |
[88] |
SCHULZ H D, DAHMKE A, SCHINZEL U, et al. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic[J]. Geochimica et Cosmochimica Acta, 1994, 58(9):2041-2060.
DOI URL |
[89] | HENSEN C, ZABEL M, SCHULZ H N. Benthic cycling of oxygen, nitrogen and phosphorus[M]. Berlin & Heidelberg: Springer, 2006: 207-240. |
[90] | SAHA P K, HOSSAIN M D. Assessment of heavy metal contamination and sediment quality in the Buriganga River, Bangladesh[C]//Proceeding of International Conference on Environmental Science and Technology. Singapore: IACSIT Press, 2011: 26-28. |
[91] |
KENNEDY A D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synjournal[J]. Arctic and Alpine Research, 1993, 25(4):308-315.
DOI URL |
[92] |
BELNAP J, WELTER J R, GRIMM N B, et al. Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J]. Ecology, 2005, 86(2):298-307.
DOI URL |
[93] |
ZEGLIN L H, DAHM C N, BARRETT J E, et al. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams[J]. Microbial ecology, 2011, 61(3):543-556.
DOI URL |
[94] | 刘邓. 不同厌氧微生物功能群对黏土矿物结构Fe(Ⅲ)的还原作用及其矿物转变[D]. 武汉: 中国地质大学(武汉), 2012. |
[95] | 郑浚茂, 应凤祥. 煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J]. 石油学报, 1997, 18(4):19-24. |
[96] |
POESEN J, DE LUNA E, FRANCA A, et al. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content[J]. Catena, 1999, 36(4):315-329.
DOI URL |
[97] |
SEEGER M, ERREA M P, BEGUERIA S, et al. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees[J]. Journal of Hydrology, 2004, 288(3/4):299-311.
DOI URL |
[98] |
MCDOWELL R W, SHARPLEY A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage[J]. Journal of Environmental Quality, 2001, 30(2):508-520.
DOI URL |
[99] |
RUBOL S, MANZONI S, BELLIN A, et al. Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)[J]. Advances in Water Resources, 2013, 62:106-124.
DOI URL |
[100] |
ZiADAT F M, TAIMEH A Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment[J]. Land Degradation & Development, 2013, 24(6):582-590.
DOI URL |
[101] |
BLASCO J, SÁENZ V, GÓMEZ-PARRA A . Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian Peninsula[J]. Science of the Total Environment, 2000, 247(2/3):189-199.
DOI URL |
[102] |
VON DER HEYDEN C J, NEW M G. Sediment chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential[J]. Journal of Geochemical Exploration, 2004, 82(1/2/3):35-57.
DOI URL |
[103] |
GUERRERO A O, CHERRY J A, RUDOLPH D L. Large-scale aquitard consolidation near Mexico City[J]. Groundwater, 2005, 31(5):708-718.
DOI URL |
[104] |
THORSTENSON D C, FISHER D W, CROFT M G. The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota[J]. Water Resource Research, 1979, 15(6):1479-1498.
DOI URL |
[105] |
HENDRY M J, WOODBURY A D. Clay aquitards as archives of Holocenepaleo climate: δ18O and thermal profiling[J]. Groundwater, 2007, 45(6):683-691.
DOI URL |
[1] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[2] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[3] | 周长松, 邹胜章, 冯启言, 朱丹尼, 李军, 王佳, 谢浩, 邓日欣. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50. |
[4] | 王广才, 王焰新, 刘菲, 郭华明. 基于文献计量学分析水文地球化学研究进展及趋势[J]. 地学前缘, 2022, 29(3): 25-36. |
[5] | 刘海燕, 刘茂涵, 张卫民, 孙占学, 王振, 吴通航, 郭华明. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144. |
[6] | 马月花, 唐保春, 苏生云, 张盛生, 李成英. 青海共和盆地地热流体地球化学特征及热储水-岩相互作用过程[J]. 地学前缘, 2020, 27(1): 123-133. |
[7] | 刘玉龙,吴维洋,范俊欣,陈鸿汉. 云南压实黏土层对油类污染物的防渗性能实验研究[J]. 地学前缘, 2019, 26(4): 273-278. |
[8] | 刘成林,平英奇,郭泽清,田继先,洪唯宇,张蔚,霍俊洲. 柴达木盆地西北古近系新近系异常高压形成机制分析[J]. 地学前缘, 2019, 26(3): 211-219. |
[9] | 吴初,武雄,张艳帅,岩岩,朱鹏程. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018, 25(4): 307-315. |
[10] | 毛若愚, 郭华明, 贾永锋, 姜玉肖, 曹永生, 赵威光, 王振. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268. |
[11] | 张保建,然高宗军,然张凤禹. 华北盆地地下热水的水动力条件及水化学响应[J]. 地学前缘, 2015, 22(6): 217-226. |
[12] | 郭清海,王焰新. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟:以山西太原盆地为例[J]. 地学前缘, 2014, 21(4): 83-90. |
[13] | 郭华明, 倪萍, 贾永锋, 郭琦, 姜玉肖. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[14] | 刘川江,郑海飞. 金刚石压腔(DAC)技术及其在地球科学中的应用[J]. 地学前缘, 2012, 19(4): 141-150. |
[15] | 何小胡, 刘震, 梁全胜, 李俊良, 齐宇. 沉积地层埋藏过程对泥岩压实作用的影响[J]. 地学前缘, 2010, 17(4): 167-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||