地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 204-214.DOI: 10.13745/j.esf.sf.2024.7.19
戴传山1,2(), 刘东喜1, 李嘉舒1, 雷海燕1,2,*(
), 陈书焕1, 陈谦涵1, 王启龙1
收稿日期:
2023-12-31
修回日期:
2024-04-20
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*雷海燕(1974—),女,博士,副教授,主要从事地热井下换热器技术研究工作。E-mail: leihy@tju.edu.cn
作者简介:
戴传山(1962—),男,博士,教授,博士生导师,主要从事地热开发与利用技术研究工作。E-mail: csdai@tju.edu.cn
基金资助:
DAI Chuanshan1,2(), LIU Dongxi1, LI Jiashu1, LEI Haiyan1,2,*(
), CHEN Shuhuan1, CHEN Qianhan1, WANG Qilong1
Received:
2023-12-31
Revised:
2024-04-20
Online:
2024-11-25
Published:
2024-11-25
摘要:
地热能是一种资源分布广泛,稳定可持续,清洁低碳,且唯一以热能形式存在的可再生能源,地热能的高效开发利用不仅可以满足我国北方地区的建筑供热需求,也可缓解我国电力短缺,对实现我国“双碳”战略目标有重要意义。地热能“宜热用热”,较其他可再生能源在建筑供热方面具有天然优势,但目前我国地热能利用仅占我国能耗的1.5%左右,远低于我国建筑能耗的1/3能源消耗占比。我国地热直接利用规模多年来居世界首位,但浅层地源热泵供热形式占60%左右,传统地热能利用相对占比较低,主要原因在于传统的地热抽灌模式依赖于当地水文地质条件,某些砂岩地层回灌困难或不经济,为此管理部门加强了地热井管理以避免地下水位下降较快的现象。近年来,“取热不取水”的地热单井取热技术受到广泛关注,此技术无回灌问题,适应我国当今的能源开发利用形势,有很好的应用前景。本文对地热单井换热取热技术的研究与应用现状进行简要综述,重点总结了国内外有关中深层“取热不取水”地热单井换热取热技术的研究现状,分析了不同单井强化取热技术的基本原理与不足,强调“因地制宜”实现单井原位取热技术的重要性,提出中深层地热单井循环取热技术是一种环境友好、可持续稳定的供热模式,可有效解决我国北方地区建筑的冬季供热问题。随着打井技术的不断进步,此技术有一定的市场竞争力;建议出台针对“取热不取水”或“取热不耗水”单井取热技术的管理政策,这对进一步提高我国的地热能利用规模,实现“双碳”目标有重要意义。
中图分类号:
戴传山, 刘东喜, 李嘉舒, 雷海燕, 陈书焕, 陈谦涵, 王启龙. 地热单井原位换热取热技术研究现状及展望[J]. 地学前缘, 2024, 31(6): 204-214.
DAI Chuanshan, LIU Dongxi, LI Jiashu, LEI Haiyan, CHEN Shuhuan, CHEN Qianhan, WANG Qilong. Single-well in-situ heat extraction technology—a review and perspectives[J]. Earth Science Frontiers, 2024, 31(6): 204-214.
图2 几种典型浅层地热单井井下换热器(DHE)结构设计(据文献[22⇓⇓-25]修改) a—单U形管;b—外套对流增速管;c—侧置对流增速管;d—空压泵循环。
Fig.2 Typical designs of shallow downhole heat exchangers. Modified after [22⇓⇓-25].
文献 | 井深/m | 井底温度/℃ | 热输出/kW | 延米功率/(W·m-1) | 试验地点 |
---|---|---|---|---|---|
Moritaa [ | 876.5 | 110.3 | 76 | 86 | 美国,Hawaii |
Kohla[ | 1 213 | 45 | 80 | 66 | 瑞士,Weissbad |
Kohla [ | 2 302 | 78 | 100 | 43 | 瑞士,Weggis |
Dijkshoorna [ | 2 500 | 85 | 117 | 47 | 德国,Aachen |
Wanga [ | 2 000 | 286 | 143 | 中国,西安 | |
Denga [ | 2 000 2 000 2 000 2 500 2 000 | 258 158 288 273 122 | 129 79 144 109 61 | 中国,西安 | |
卜宪标 | 2 605 | 85 | 448.49 | 172 | 中国,青岛 |
Zhan | 1 800 | 57 | 134 | 75 | 中国,雄安 |
Huan | 2 044 | 107.3 | 238 | 中国,松原 | |
L | 2 539 | 89 | 480 | 189 | 中国,西安 |
Maa [ | 2 000 | 266 | 133 | 中国,天津 | |
Huan | 3 000 | 128 | 190 | 63 | 中国,唐山 |
Yi | 1 751 | 71 | 930 | 531 | 中国,天津 |
Michaelc [ | 2 000 | 69 | 363 | 181.5 | 英国,Cornwall |
李嘉舒 | 1 400 | 68 | 450 | 320 | 中国,唐山 |
表1 中深层单井取热试验实例
Table 1 Summary of field tests on heat extraction from a single geothermal well
文献 | 井深/m | 井底温度/℃ | 热输出/kW | 延米功率/(W·m-1) | 试验地点 |
---|---|---|---|---|---|
Moritaa [ | 876.5 | 110.3 | 76 | 86 | 美国,Hawaii |
Kohla[ | 1 213 | 45 | 80 | 66 | 瑞士,Weissbad |
Kohla [ | 2 302 | 78 | 100 | 43 | 瑞士,Weggis |
Dijkshoorna [ | 2 500 | 85 | 117 | 47 | 德国,Aachen |
Wanga [ | 2 000 | 286 | 143 | 中国,西安 | |
Denga [ | 2 000 2 000 2 000 2 500 2 000 | 258 158 288 273 122 | 129 79 144 109 61 | 中国,西安 | |
卜宪标 | 2 605 | 85 | 448.49 | 172 | 中国,青岛 |
Zhan | 1 800 | 57 | 134 | 75 | 中国,雄安 |
Huan | 2 044 | 107.3 | 238 | 中国,松原 | |
L | 2 539 | 89 | 480 | 189 | 中国,西安 |
Maa [ | 2 000 | 266 | 133 | 中国,天津 | |
Huan | 3 000 | 128 | 190 | 63 | 中国,唐山 |
Yi | 1 751 | 71 | 930 | 531 | 中国,天津 |
Michaelc [ | 2 000 | 69 | 363 | 181.5 | 英国,Cornwall |
李嘉舒 | 1 400 | 68 | 450 | 320 | 中国,唐山 |
图6 模拟开式单井取热不同物理模型的温度场与流线 a—模型,温度场与流线(据文献[47]);b—模型,温度场与流线(据文献[48])。
Fig.6 Numerical simulation results on natural convection (in cavity partially filled with porous media), temperature contour and streamline using different physical models. Adapted from [47-48].
[1] | 陈焰华. 中国地热能产业发展报告[R]. 北京: 中国建筑工业出版社, 2021. |
[2] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[3] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[4] | LUND J W, FREESTON D H, BOYD T L. Direct utilization of geothermal energy 2010 worldwide review[J]. Geothermics, 2011, 40(3): 159-180. |
[5] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[6] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[7] | LIU D X, LEI H Y, LI J S, et al. Optimization of a district heating system coupled with a deep open loop geothermal well and heat pumps[J]. Renewable Energy, 2024, 223: 119991. |
[8] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
DOI |
[9] | ALLIS R, JAMES R. Natural-convection promoter for geothermal wells[J]. Transactions-Geothermal Resources Council, 1980, 4: 409-412. |
[10] | CHENG A. President’s page: geothermal energy: current and future[J]. The Leading Edge, 2022, 41(9): 588-589. |
[11] | FREESTON D H, DUNSTALL M G. Rotorua field experiment: downhole heat exchanger performance[J]. Geothermics, 1992, 21(1/2): 305-317. |
[12] | 倪龙, 马最良. 含水层参数对同井回灌地下水源热泵的影响[J]. 天津大学学报, 2006, 39(2): 229-234. |
[13] | ALIMONTI C, SOLDO E, BOCCHETTI D, et al. The wellbore heat exchangers: a technical review[J]. Renewable Energy, 2018, 123: 353-381. |
[14] | HOLMBERG H, ACUÑA J, NÆSS E, et al. Deep borehole heat exchangers, application to ground source heat pump systems[C]//International Geothermal Association. Proceeding World Geothermal Congress. Melbourne, Australia, 2015: 15-29. |
[15] | HUANG W B, CEN J W, CHEN J W, et al. Heat extraction from hot dry rock by super-long gravity heat pipe: a field test[J]. Energy, 2022, 247: 123492. |
[16] | DAI C S, LI J S, LEI H Y. A technical review of heat extraction from a single deep geothermal well without net pumping fluids out of reservoir[C]//International Geothermal Association. Proceedings World Geothermal Congress. Beijing, China, 2023: 1470-1486. |
[17] | 北京市市场监督管理局. 中深层地热供热工程技术规范: DB 14/T 2386—2021[S]. 北京: 中国建材工业出版社, 2021. |
[18] | 陕西省住房和城乡建设厅. 中深层地热地埋管供热系统应用技术规程: DB J61/T 166—2020[S]. 北京: 中国建材工业出版社, 2020. |
[19] | 甘肃省住房和城乡建设厅. 无干扰地岩热供热系统工程技术规范: DB 62/T 3144—2018[S]. 北京: 中国建材工业出版社, 2018. |
[20] | 陕西省住房和城乡建设厅. 中深层地热井下换热供热工程技术标准: DB 13(J)/T 8429—2021[S]. 北京: 中国建材工业出版社, 2021. |
[21] | DAI C S, CHEN Y. Classification of shallow and deep geothermal energy[J]. Transactions-Geothermal Resources Council, 2008, 32: 317-320. |
[22] | CULVER G, REISTAD G M. Testing and modeling of downhole heat exchangers in shallow geothermal systems[J]. Transactions-Geothermal Resources Council, 1978, 2: 129-131. |
[23] | XIE S M, DAI C S. The application of DHE combined with heat pump for Shallow geothermal energy uses[C]// Chinese Geophysical Society. Proceedings of the 27th Annual Conference of the Chinese Geophysical Society. Hunan, China, 2011: 1742-1766. |
[24] | STEINS C, BLOOMER A, ZARROUK S J. Improving the performance of the down-hole heat exchanger at the Alpine Motel, Rotorua, New Zealand[J]. Geothermics, 2012, 44: 1-12. |
[25] |
孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
DOI |
[26] | 李嘉舒. 中深层地热单井循环换热系统取热特性研究[D]. 天津: 天津大学, 2023. |
[27] | MORITA K, BOLLMEIER W S, MIZOGAMI H. An experiment to prove the concept of the downhole coaxial heat exchanger (DCHE) in Hawaii[J]. Transactions-Geothermal Resources Council, 1992, 16: 9-16. |
[28] | KOHL T, SALTON M, RYBACH L. Data analysis of the deep borehole heat exchanger plant weissbad[C]// International Geothermal Association. Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000: 3549-3564. |
[29] | KOHL T, BRENNI R, EUGSTER W. System performance of a deep borehole heat exchanger[J]. Geothermics, 2002, 31(6): 687-708. |
[30] | DIJKSHOORN L, SPEER S, PECHNIG R. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany[J]. International Journal of Geophysics, 2013(1): 916541. |
[31] | WANG Z H, WANG F H, LIU J, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
[32] | DENG J W, WEI Q P, LIANG M, et al. Field test on energy performance of medium-depth geothermal heat pump systems (MD-GHPs)[J]. Energy and Buildings, 2019, 184: 289-299. |
[33] | 卜宪标, 蒋坤卿. 地热单井连续和间歇供暖性能[J]. 中国科学: 技术科学, 2019, 49(12): 1514-1522. |
[34] | ZHANG Y Q, YU C, LI G S, et al. Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids[J]. Applied Thermal Engineering, 2019, 163: 114317. |
[35] | HUANG Y B, ZHANG Y J, XIE Y Y, et al. Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor[J]. Energy, 2020, 210: 118643. |
[36] | LI C, GUAN Y L, LIU J H, et al. Heat transfer performance of a deep ground heat exchanger for building heating in long-term service[J]. Renewable Energy, 2020, 166: 20-34. |
[37] |
马玖辰, 易飞羽, 张秋丽, 等. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
DOI |
[38] | YIN H M, SONG C F, MA L, et al. Analysis of flow and thermal breakthrough in leaky downhole coaxial open loop geothermal system[J]. Applied Thermal Engineering, 2021, 194: 117098. |
[39] | MICHALE A C, LAW R. The development and deployment of deep geothermal single well (DGSW) technology in the United Kingdom[J]. European Geologist Journal, 2017, 43: 63-68. |
[40] | BEIER R A, ACUÑA J, MOGENSEN P, et al. Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482. |
[41] | LI J S, DAI C S, LEI H Y. The influence of thermal boundary conditions of wellbore on the heat extraction performance of deep borehole heat exchangers[J]. Geothermics, 2022, 100: 102325. |
[42] | PAN A Q, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065. |
[43] | WANG Y R, WANG Y M, YOU S J, et al. Operation optimization of the coaxial deep borehole heat exchanger coupled with ground source heat pump for building heating[J]. Applied Thermal Engineering, 2022, 213: 118656. |
[44] | WANG Y R, WANG Y M, YOU S J, et al. Mathematical modeling and periodical heat extraction analysis of deep coaxial borehole heat exchanger for space heating[J]. Energy and Buildings, 2022, 265: 112102. |
[47] | CAROTENUTO A, MASSAROTTI N, MAURO A. A new methodology for numerical simulation of geothermal down-hole heat exchangers[J]. Applied Thermal Engineering, 2012, 48: 225-236. |
[48] | DAI C S, LIU X Z, LEI H Y. Natural convection modeling in an open-ended square cavity partially filled with porous media[J]. Tansactions-Geothermal Resources Council, 2011, 35: 111-114. |
[45] | 李嘉舒, 戴传山, 雷海燕, 等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质, 2023, 50(2): 198-206. |
[46] | ESKILSON P. Thermal analysis of heat extraction boreholes[D]. Lund: University of Lund, 1987. |
[1] | 王贵玲, 蔺文静. 我国陆区热状态及控热要素[J]. 地学前缘, 2024, 31(6): 1-18. |
[2] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
[3] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
[4] | 王婉丽, 段雅娟, 张薇, 朱喜, 马峰, 王贵玲. 基于管控单元的城市尺度浅层地热能开发控制因素及指引导则:以雄安新区起步区为例[J]. 地学前缘, 2024, 31(6): 158-172. |
[5] | 刘峰, 王贵玲, 姜光政, 胡圣标, 张薇, 蔺文静, 刘金辉, 张心勇, 屈泽伟, 廖传志. 我国陆区大地热流测量新进展与新认识[J]. 地学前缘, 2024, 31(6): 19-30. |
[6] | 龙西亭, 李书恒, 谢和平, 孙立成, 皋天一, 夏恩通, 李彪, 王俊, 李存宝, 莫政宇, 杜敏. 面向中低温地热资源的模块化热伏发电系统设计及性能分析[J]. 地学前缘, 2024, 31(6): 215-223. |
[7] | 蒋政, 舒彪, 谭静强. 二氧化碳基增强型地热系统储层换热研究现状及展望[J]. 地学前缘, 2024, 31(6): 235-251. |
[8] | 张健, 何雨蓓, 范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘, 2024, 31(3): 392-401. |
[9] | 吕良华, 王水. 耦合CO2脱气的岩溶地热水结垢趋势定量分析[J]. 地学前缘, 2024, 31(3): 402-409. |
[10] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[11] | 孙焕泉, 毛翔, 吴陈冰洁, 国殿斌, 王海涛, 孙少川, 张英, 罗璐. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411. |
[12] | 张健, 方桂, 何雨蓓. 中国东部地热异常区深层高温分布特征与动力学背景[J]. 地学前缘, 2023, 30(2): 316-332. |
[13] | 马力, 谢逸豪, 吴耿, 蒋宏忱. 地热生境中硫循环微生物研究进展——对早期地球生命过程的启示[J]. 地学前缘, 2023, 30(2): 479-494. |
[14] | 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明, 张盛生, 雷敏, 付国强, 李振宇. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 2023, 30(1): 81-105. |
[15] | 何雨江, 刘肖, 邢林啸, 谭现锋, 卜宪标. 河北保定岩溶地热结垢过程模拟及防垢对策[J]. 地学前缘, 2022, 29(4): 430-437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||