地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 235-251.DOI: 10.13745/j.esf.sf.2024.7.22
收稿日期:
2024-02-15
修回日期:
2024-04-28
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*舒 彪(1986—),男,博士,副教授,博士生导师,主要从事岩石力学及非常规能源开采等方面的研究工作。E-mail: biaoshu@csu.edu.cn
作者简介:
蒋 政(2001—),女,博士研究生,地质工程专业。E-mail: 8211210704@csu.edu.cn
基金资助:
JIANG Zheng(), SHU Biao*(
), TAN Jingqiang
Received:
2024-02-15
Revised:
2024-04-28
Online:
2024-11-25
Published:
2024-11-25
摘要:
干热岩资源分布广泛、储量巨大,被认为是具有广阔发展前景的绿色能源之一,而增强型地热系统(EGS)是开采干热岩资源的主要技术方法。在CO2-EGS中,超临界CO2(ScCO2)作为取热工质可以减少水资源浪费、降低泵送能量消耗,比H2O具有更高的传热效率,并且可以实现部分CO2的地质封存,具有较大的发展前景。本文从EGS裂隙储层模型、CO2的物理性质,以及CO2在储层裂隙中的流动与传热特性3个方面,总结了CO2-EGS储层换热技术的研究进展,并针对我国典型地热场地的实际应用提出了建议。结果表明,裂隙性多孔介质模型更为实用和高效,而局部非热平衡模型更符合实际情况。CO2具有较高质量流率和较轻微的矿物溶解能力,其矿化封存可降低地震风险,但会使储层的渗透率下降,建议调整主裂缝的非接触面积或CO2的注入参数以减少渗透率的降低。未来应深入研究CO2的非达西流动特性,并探究CO2在共和与松辽盆地储层中的损失问题以及福建漳州凝灰岩盖层对CO2的封存能力。
中图分类号:
蒋政, 舒彪, 谭静强. 二氧化碳基增强型地热系统储层换热研究现状及展望[J]. 地学前缘, 2024, 31(6): 235-251.
JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects[J]. Earth Science Frontiers, 2024, 31(6): 235-251.
作者 | 储层模型 | 研究内容 |
---|---|---|
Bongole等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,H2O-EGS与CO2-EGS的传热性能的对比 |
Sun等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,增加EGS中CO2封存量的方法研究 |
翟海珍等[ | 平行裂隙群模型 | 换热单元体的厚度和长度对产出温度的影响 |
Cao等[ | 等效多孔介质模型 | EGS的长期取热过程以及取热工质的非达西流动行为 |
Gao等[ | 等效多孔介质模型 | EGS中达西定律和非达西定律的对比 |
Wang等[ | 等效多孔介质模型 | 不同的储层渗透率和地温梯度下,H2O-EGS与CO2-EGS的性能对比 |
Chen和Jiang[ | 等效多孔介质模型 | 井布局对EGS取热性能的影响 |
Lu等[ | 等效多孔介质模型 | 井筒布局与流体流动注入方案对ScCO2-EGS取热性能的影响 |
陈必光等[ | 离散裂隙网络模型 | 基于二维裂隙性储层的离散裂隙网络模型计算方法 |
Shi等[ | 离散裂隙网络模型 | 各种离散裂隙网络模型的取热性能以及岩石力学行为与裂隙参数对EGS取热性能的影响 |
Liao等[ | 离散裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Sun等[ | 裂隙性多孔介质模型 | EGS储层中的流体的流动、传热和力学行为的特征 |
Sun等[ | 裂隙性多孔介质模型 | EGS取热能力的评估 |
表1 不同储层裂隙模型在EGS中的应用
Table 1 Application of different reservoir fracture models in EGS
作者 | 储层模型 | 研究内容 |
---|---|---|
Bongole等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,H2O-EGS与CO2-EGS的传热性能的对比 |
Sun等[ | 单一裂隙模型 | 热—水(TH)模型解析解的推导,增加EGS中CO2封存量的方法研究 |
翟海珍等[ | 平行裂隙群模型 | 换热单元体的厚度和长度对产出温度的影响 |
Cao等[ | 等效多孔介质模型 | EGS的长期取热过程以及取热工质的非达西流动行为 |
Gao等[ | 等效多孔介质模型 | EGS中达西定律和非达西定律的对比 |
Wang等[ | 等效多孔介质模型 | 不同的储层渗透率和地温梯度下,H2O-EGS与CO2-EGS的性能对比 |
Chen和Jiang[ | 等效多孔介质模型 | 井布局对EGS取热性能的影响 |
Lu等[ | 等效多孔介质模型 | 井筒布局与流体流动注入方案对ScCO2-EGS取热性能的影响 |
陈必光等[ | 离散裂隙网络模型 | 基于二维裂隙性储层的离散裂隙网络模型计算方法 |
Shi等[ | 离散裂隙网络模型 | 各种离散裂隙网络模型的取热性能以及岩石力学行为与裂隙参数对EGS取热性能的影响 |
Liao等[ | 离散裂隙网络模型 | CO2-EGS的长期性能的模拟 |
Sun等[ | 裂隙性多孔介质模型 | EGS储层中的流体的流动、传热和力学行为的特征 |
Sun等[ | 裂隙性多孔介质模型 | EGS取热能力的评估 |
作者 | 方法 | 研究内容 |
---|---|---|
朱家玲等[ | 圆柱岩体裂隙内流动换热模型 | 单裂隙流固换热系数解析解的推导以及流体流速和裂隙开度对换热系数的影响 |
Chen等[ | 统一管网方法 | 流体在粗糙壁面裂隙网络的流动传热过程 |
Wang等[ | 三维热—水—力(THM)全耦合数值模型 | 具有嵌入式复杂离散裂隙网络的ScCO2-EGS的热开采和碳封存性能评估 |
Wang[ | 与两相流体流动完全耦合的热—水—力(THM)模型 | 井筒流体与裂缝之间的热交换效率 |
Liao等[ | 3D热—水—力(THM)耦合嵌入式复杂裂隙网络模型 | CO2-EGS的长期性能的模拟 |
表2 基于局部非热平衡模型的EGS研究
Table 2 EGS studies based on the local thermal non-equilibrium model
作者 | 方法 | 研究内容 |
---|---|---|
朱家玲等[ | 圆柱岩体裂隙内流动换热模型 | 单裂隙流固换热系数解析解的推导以及流体流速和裂隙开度对换热系数的影响 |
Chen等[ | 统一管网方法 | 流体在粗糙壁面裂隙网络的流动传热过程 |
Wang等[ | 三维热—水—力(THM)全耦合数值模型 | 具有嵌入式复杂离散裂隙网络的ScCO2-EGS的热开采和碳封存性能评估 |
Wang[ | 与两相流体流动完全耦合的热—水—力(THM)模型 | 井筒流体与裂缝之间的热交换效率 |
Liao等[ | 3D热—水—力(THM)耦合嵌入式复杂裂隙网络模型 | CO2-EGS的长期性能的模拟 |
图4 CO2 (a)和H2O(b)的流体密度与黏度之比 (据文献[10]修改)
Fig.4 p-T phase diagrams for CO2 (a) and H2O (b) with different fluid-density/viscosity ratios. Modified after [10].
图6 模拟中得到(a)H2O-EGS和(b)CO2-EGS的关键性能参数 (据文献[16]修改)
Fig.6 Key performance parameters for H2O-EGS (a) and CO2-EGS (b) from simulation. Modified after [16].
图9 CO2和H2O在不同储层渗透率下的(a)热提取率与(b)生产井中流量 (据文献[106]修改)
Fig.9 Temporal change in heat extraction rates (a) and flow rates (b) of CO2 and H2O in production wells under different reservoir permeabilities. Modified after [106].
图10 CO2和H2O在不同储层温度下的热提取率 (据文献[106]修改)
Fig.10 Temporal change in heat extraction rates of CO2 and H2O at different reservoir temperatures. Modified after [106].
图11 不同温度下CO2与H2O的热提取率之比 (据文献[106]修改)
Fig.11 Temporal change in ratios of heat extraction rates of CO2 and H2O under different temperatures. Modified after [106].
地热场地 | 热源机制 | 储层温度 | 地层岩性 |
---|---|---|---|
共和盆地 恰卜恰地区 | 壳内低速层和地壳增厚导致的放射性元素重分布为重要热源[ | 深度为2 927.26 m,温度为181.17 ℃,地温梯度为6.0 ℃/100 m[ | 盖层主要为泥岩、泥质粉砂岩;储层以花岗岩、闪长岩等为主[ |
松辽盆地 | 上地幔隆起为主要热源,花岗岩内放射性元素衰变为次要热源[ | 深度为7 080 m,温度为240 ℃,平均地温梯度为3.8 ℃/100 m[ | 盖层主要为泥岩,局部与粉砂岩互层[ |
福建漳州 | 软流圈的上升流和花岗岩内放射性元素的衰变为重要热源[ | 深度为3 997 m,温度约为109.58 ℃[ | 盖层上部覆盖薄第四纪沉积岩,下部85 %为凝灰岩,最大厚度超1 000 m[ |
表3 我国典型地热场地的特征
Table 3 Geothermal characteristics of typical geothermal sites in China
地热场地 | 热源机制 | 储层温度 | 地层岩性 |
---|---|---|---|
共和盆地 恰卜恰地区 | 壳内低速层和地壳增厚导致的放射性元素重分布为重要热源[ | 深度为2 927.26 m,温度为181.17 ℃,地温梯度为6.0 ℃/100 m[ | 盖层主要为泥岩、泥质粉砂岩;储层以花岗岩、闪长岩等为主[ |
松辽盆地 | 上地幔隆起为主要热源,花岗岩内放射性元素衰变为次要热源[ | 深度为7 080 m,温度为240 ℃,平均地温梯度为3.8 ℃/100 m[ | 盖层主要为泥岩,局部与粉砂岩互层[ |
福建漳州 | 软流圈的上升流和花岗岩内放射性元素的衰变为重要热源[ | 深度为3 997 m,温度约为109.58 ℃[ | 盖层上部覆盖薄第四纪沉积岩,下部85 %为凝灰岩,最大厚度超1 000 m[ |
[1] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
[2] | MOYA D, ALDÁS C, KAPARAJU P. Geothermal energy: power plant technology and direct heat applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 889-901. |
[3] | 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341. |
[4] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. |
[5] | 陆如意. 深度5 000米我国首口地热科学探井开钻[N]. 第一财经日报, 2023-09-07(A09). |
[6] | ZHONG C H, XU T F, GHERARDI F, et al. Comparison of CO2 and water as working fluids for an enhanced geothermal system in the Gonghe Basin, northwest China[J]. Gondwana Research, 2023, 122: 199-214. |
[7] | GUO T K, ZHANG S C, GE H K, et al. A new method for evaluation of fracture network formation capacity of rock[J]. Fuel, 2015, 140: 778-787. |
[8] | GARCIA J, HARTLINE C, WALTERS M, et al. The Northwest Geysers EGS demonstration project, California: Part 1: characterization and reservoir response to injection[J]. Geothermics, 2016, 63: 97-119. |
[9] | ESTEVES A F, SANTOS F M, MAGALHÃES PIRES J C. Carbon dioxide as geothermal working fluid: an overview[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109331. |
[10] | PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. |
[11] | XU R N, ZHANG L, ZHANG F Z, et al. A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid[J]. International Journal of Energy Research, 2015, 39(13): 1722-1741. |
[12] | NA J, XU T F, YUAN Y L, et al. An integrated study of fluid-rock interaction in a CO2-based enhanced geothermal system: a case study of Songliao Basin, China[J]. Applied Geochemistry, 2015, 59: 166-177. |
[13] |
尹欣欣, 蒋长胜, 翟鸿宇, 等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报, 2021, 64(11): 3817-3836.
DOI |
[14] | 谢和平, 熊伦, 谢凌志, 等. 中国CO2地质封存及增强地热开采一体化的初步探讨[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3077-3086. |
[15] | BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. California: Stanford University, 2000: 233-238. |
[16] | LEI H W. Performance comparison of H2O and CO2 as the working fluid in coupled wellbore/reservoir systems for geothermal heat extraction[J]. Frontiers in Earth Science, 2022, 10: 819778. |
[17] | YARUSHINA V M, BERCOVICI D. Mineral carbon sequestration and induced seismicity[J]. Geophysical Research Letters, 2013, 40(5): 814-818. |
[18] | KNOBLAUCH T A K, TRUTNEVYTE E. Siting enhanced geothermal systems (EGS): heat benefits versus induced seismicity risks from an investor and societal perspective[J]. Energy, 2018, 164: 1311-1325. |
[19] | GUO T K, ZHANG Y L, ZHANG W, et al. Numerical simulation of geothermal energy productivity considering the evolution of permeability in various fractures[J]. Applied Thermal Engineering, 2022, 201: 117756. |
[20] | LIU S, ZHANG L M, ZHANG K, et al. A simplified and efficient method for water flooding production index calculations in low permeable fractured reservoir[J]. Journal of Energy Resources Technology, 2019, 141(11): 112905. |
[21] | JÄNICKE R, QUINTAL B, LARSSON F, et al. Identification of viscoelastic properties from numerical model reduction of pressure diffusion in fluid-saturated porous rock with fractures[J]. Computational Mechanics, 2019, 63(1): 49-67. |
[22] | TIAN L H, LU L, CHEN W K, et al. Organic open-cell porous structure modeling[C]//Proceedings of the 5th annual ACM symposium on computational fabrication. New York: Association for Computing Machinery, 2020: 1-12. |
[23] | HADGU T, KARRA S, KALININA E, et al. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553: 59-70. |
[24] | ZENG Y C, SU Z, WU N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107. |
[25] | FOX D B, SUTTER D, BECKERS K F, et al. Sustainable heat farming: modeling extraction and recovery in discretely fractured geothermal reservoirs[J]. Geothermics, 2013, 46: 42-54. |
[26] | LAUWERIER H A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied Scientific Research, Section A, 1955, 5(2): 145-150. |
[27] | HEUER N, KÜPPER T, WINDELBERG D. Mathematical model of a Hot Dry Rock system[J]. Geophysical Journal International, 1991, 105(3): 659-664. |
[28] | SUN Z X, XIN Y, YAO J, et al. Numerical investigation on the heat extraction capacity of dual horizontal wells in enhanced geothermal systems based on the 3-D THM model[J]. Energies, 2018, 11(2): 280. |
[29] | SUN Z X, ZHANG X, XU Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Energy, 2017, 120: 20-33. |
[30] | BONGOLE K, SUN Z X, YAO J, et al. Multifracture response to supercritical CO2-EGS and water-EGS based on thermo-hydro-mechanical coupling method[J]. International Journal of Energy Research, 2019, 43(13): 7173-7196. |
[31] | SUN Z X, BONGOLE K, YAO J, et al. Combination of double and single cyclic pressure alternation technique to increase CO2 sequestration with heat mining in enhanced geothermal reservoirs by thermo-hydro-mechanical coupling method[J]. International Journal of Energy Research, 2020, 44(5): 3478-3496. |
[32] | 翟海珍, 苏正, 凌璐璐, 等. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 2016, 31(3): 1399-1405. |
[33] |
CAO W J, HUANG W B, WEI G L, et al. A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction[J]. Frontiers in Energy, 2019, 13(3): 439-449.
DOI |
[34] | GAO X, LI T L, MENG N, et al. Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy’s law combined with power generation from hot dry rock[J]. Renewable Energy, 2023, 206: 428-440. |
[35] | WANG C L, CHENG W L, NIAN Y L, et al. Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration[J]. Energy, 2018, 142: 157-167. |
[36] | CHEN J L, JIANG F M. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37-48. |
[37] | LU X, TONG X L, DU X P, et al. Effect of wellbore layout and varying flow rate on fluid flow and heat transfer of deep geothermal mining system[J]. Thermal Science and Engineering Progress, 2023, 42: 101870. |
[38] | 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报, 2014, 33(1): 43-51. |
[39] | SHI Y, SONG X Z, LI J C, et al. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network[J]. Fuel, 2019, 244: 207-226. |
[40] | LIAO J X, HU K, MEHMOOD F, et al. Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework[J]. Energy, 2023, 285: 128734. |
[41] | JARRAHI M, MOORE K R, HOLLÄNDER H M. Comparison of solute/heat transport in fractured formations using discrete fracture and equivalent porous media modeling at the reservoir scale[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019, 113: 14-21. |
[42] | LUO F, XU R N, JIANG P X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)[J]. Energy, 2014, 64: 307-322. |
[43] | 丁志文, 董平川, 李世银, 等. 岩体分形离散裂隙网络系统中流体流动模拟研究进展[J]. 水利水电科技进展, 2016, 36(2): 87-94. |
[44] | LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research, 1985, 21(8): 1105-1115. |
[45] | WANG G S, MA X D, SONG X Z, et al. Modeling flow and heat transfer of fractured reservoir: implications for a multi-fracture enhanced geothermal system[J]. Journal of Cleaner Production, 2022, 365: 132708. |
[46] | WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of Cubic Law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024. |
[47] | JIANG F M, LUO L, CHEN J L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2013, 41: 57-62. |
[48] | WANG G S, SONG X Z, SHI Y, et al. Production performance of a novel open loop geothermal system in a horizontal well[J]. Energy Conversion and Management, 2020, 206: 112478. |
[49] | BROWNELL D H Jr, GARG S K, PRITCHETT J W. Governing equations for geothermal reservoirs[J]. Water Resources Research, 1977, 13(6): 929-934. |
[50] | MINKOWYCZ W J, HAJI-SHEIKH A, VAFAI K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number[J]. International Journal of Heat and Mass Transfer, 1999, 42(18): 3373-3385. |
[51] | SHAIK A R, RAHMAN S S, TRAN N H, et al. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31(10): 1600-1606. |
[52] | WANG G S, SONG X Z, SONG G F, et al. Analyzes of thermal characteristics of a hydrothermal coaxial closed-loop geothermal system in a horizontal well[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121755. |
[53] | JIANG P X, REN Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1): 102-110. |
[54] | JIANG P X. Numerical simulation of forced convection heat transfer in porous plate channels using thermal equilibrium and nonthermal equilibrium models[J]. Numerical Heat Transfer, Part A: Applications, 1999, 35(1): 99-113. |
[55] | OUYANG X L, JIANG P X, XU R N. Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2013, 60: 31-40. |
[56] | WANG G S, SONG X Z, SHI Y, et al. Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system[J]. Renewable Energy, 2021, 163: 974-986. |
[57] | GUO Y H, ZHANG L, YANG Y F, et al. Pore-scale investigation of immiscible displacement in rough fractures[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109107. |
[58] | WANG G S, SONG X Z, YU C, et al. Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well[J]. Energy, 2022, 242: 122527. |
[59] | HEINZE T, HAMIDI S. Heat transfer and parameterization in local thermal non-equilibrium for dual porosity continua[J]. Applied Thermal Engineering, 2017, 114: 645-652. |
[60] | HAN S C, CHENG Y F, GAO Q, et al. Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo‐poroelastic effects[J]. Energy Science and Engineering, 2019, 7(5): 1705-1726. |
[61] | 朱家玲, 张国伟, 李君, 等. 裂隙通道内流固换热系数解析解及敏感性分析[J]. 太阳能学报, 2016, 37(8): 2019-2025. |
[62] | CHEN Y, MA G W, WANG H D. Heat extraction mechanism in a geothermal reservoir with rough-walled fracture networks[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1083-1093. |
[63] | WANG Y, LI T, CHEN Y, et al. Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks[J]. Energy, 2019, 173: 92-108. |
[64] | WANG Y. Coupled THM formulation and wellbore analytical solution in naturally fractured media during injection/production[J]. Advances in Water Resources, 2023, 178: 104492. |
[65] | ZHAO Z H. On the heat transfer coefficient between rock fracture walls and flowing fluid[J]. Computers and Geotechnics, 2014, 59: 105-111. |
[66] | HEINZE T, HAMIDI S, GALVAN B. A dynamic heat transfer coefficient between fractured rock and flowing fluid[J]. Geothermics, 2017, 65: 10-16. |
[67] | HUANG W B, CAO W J, GUO J, et al. An analytical method to determine the fluid-rock heat transfer rate in two-equation thermal model for EGS heat reservoir[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1281-1290. |
[68] | MA Y Q, ZHANG Y J, YU Z W, et al. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction[J]. International Journal of Heat and Mass Transfer, 2018, 119: 139-147. |
[69] | ZHAO J, TSO C P. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(6): 633-641. |
[70] | BAI B, HE YY, LI X C, et al. Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen[J]. Environmental Earth Sciences, 2016, 75(22): 1460. |
[71] | ZHANG G W, ZHU J L, LI J, et al. The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters[C]//Proceedings of World Geothermal Congress 2015. Melbourne: International Geothermal Association, 2015. |
[72] | HUANG X X, ZHU J L, LI J, et al. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure[J]. International Communications in Heat and Mass Transfer, 2016, 75: 78-85. |
[73] | BAI B, HE Y Y, HU S B, et al. An analytical method for determining the convection heat transfer coefficient between flowing fluid and rock fracture walls[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1787-1799. |
[74] | BAI B, HE Y Y, LI X C, et al. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core[J]. Applied Thermal Engineering, 2017, 116: 79-90. |
[75] | JIANG Y Q, YAO H Y, CUI Y X, et al. Evaluative analysis of formulas of heat transfer coefficient of rock fracture[J]. International Journal of Thermophysics, 2020, 41(8): 104. |
[76] | HEIDARYAN E, HATAMI T, RAHIMI M, et al. Viscosity of pure carbon dioxide at supercritical region: measurement and correlation approach[J]. The Journal of Supercritical Fluids, 2011, 56(2): 144-151. |
[77] | ZHANG J, XING H L. Numerical modeling of non-Darcy flow in near-well region of a geothermal reservoir[J]. Geothermics, 2012, 42: 78-86. |
[78] | 刘松泽, 魏建光, 马媛媛, 等. 超临界二氧化碳在地热开发中的应用研究进展[J]. 应用化工, 2020, 49(6): 1537-1540. |
[79] | KAIEDA H, UEDA A, KUBOTA K, et al. Field experiments for studying on CO2 sequestration in solid minerals at the Ogachi HDR geothermal site, Japan[C]//Proceedings of 34th workshop on geothermal reservoir engineering. Stanford: Stanford Geothermal Program, 2009. |
[80] | LI P, HAO Y, WU Y, et al. Experimental study on the effect of CO2 storage on the reservoir permeability in a CO2-based enhanced geothermal system[J]. Geothermal Energy, 2023, 11(1): 24. |
[81] | 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. |
[82] | SINGH KK, SINGH D N, RANJITH P G. Laboratory simulation of flow through single fractured granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 987-1000. |
[83] | TSANG Y W. The effect of tortuosity on fluid flow through a single fracture[J]. Water Resources Research, 1984, 20(9): 1209-1215. |
[84] | RANJITH P G. An experimental study of single and two-phase fluid flow through fractured granite specimens[J]. Environmental Earth Sciences, 2010, 59(7): 1389-1395. |
[85] | AMADEI B, ILLANGASEKARE T. A mathematical model for flow and solute transport in non-homogeneous rockfractures[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6): 719-731. |
[86] | 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. |
[87] | 王志良, 申林方, 李邵军, 等. 基于格子Boltzmann方法的岩体单裂隙面渗流特性研究[J]. 岩土力学, 2017, 38(4): 1203-1210. |
[88] | 张戈, 田园, 李英骏. 不同JRC粗糙单裂隙的渗流机理数值模拟研究[J]. 中国科学: 物理学力学天文学, 2019, 49(1): 30-39. |
[89] | XIAO W M, XIA C C, WEI W, et al. Combined effect of tortuosity and surface roughness on estimation of flow rate through a single rough joint[J]. Journal of Geophysics and Engineering, 2013, 10(4): 045015. |
[90] | BARTON N, BANDIS S, BAKHTAR K. Strength,deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1985, 22(3): 121-140. |
[91] | BROWN S R. Fluid flow through rock joints: the effect of surface roughness[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1337-1347. |
[92] | AVANTHI ISAKA B L, RANJITH P G. Investigation of temperature- and pressure-dependent flow characteristics of supercritical carbon dioxide- induced fractures in Harcourt granite: application to CO2-based enhanced geothermal systems[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119931. |
[93] | SHI Y, SONG X Z, SHEN Z H, et al. Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells[J]. Energy, 2018, 163: 38-51. |
[94] | GUO T K, ZHANG Y L, HE J Y, et al. Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield[J]. Renewable Energy, 2021, 177: 1-12. |
[95] | HUANG W B, CAO W J, JIANG F M. A novel single-well geothermal system for hot dry rock geothermal energyexploitation[J]. Energy, 2018, 162: 630-644. |
[96] | LIU X L, WANG Y M, LI S, et al. Convection heat transfer of supercritical CO2 in a single fracture in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105170. |
[97] | TAN J, RONG G, HE R H, et al. Numerical investigation of heat transfer effect on flow behavior in a single fracture[J]. Arabian Journal of Geosciences, 2020, 13(17): 851. |
[98] | KOHL T, EVANS K F, HOPKIRK R J, et al. Observation and simulation of non-Darcian flow transients in fractured rock[J]. Water Resources Research, 1997, 33(3): 407-418. |
[99] | ZHANG J, ZHAO M, WANG G Y, et al. Evaluation of heat extraction performance of multi-well injection enhanced geothermal system[J]. Applied Thermal Engineering, 2022, 201: 117808. |
[100] | ASAI P, PODGORNEY R, MCLENNAN J, et al. Analytical model for fluid flow distribution in an Enhanced Geothermal Systems (EGS)[J]. Renewable Energy, 2022, 193: 821-831. |
[101] | PRUESS K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454. |
[102] | JIANG P X, ZHANG L, XU R N. Experimental study of convective heat transfer of carbon dioxide at supercritical pressures in a horizontal rock fracture and its application to enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 117: 39-49. |
[103] | WANG C G, SHI X K, ZHANG W, et al. Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model[J]. International Journal of Mining Science and Technology, 2022, 32(2): 225-236. |
[104] | DOBSON P, KNEAFSEY T J, BLANKENSHIP D, et al. An introduction to the EGS Collab Project[C]//Geothermal energy:power to do more - geothermal resources council 2017 annual meeting, GRC 2017. Salt Lake City: Geothermal Resources Council, 2017: 837-849. |
[105] | ZHANG E Y, WEN D G, WANG G L, et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 2022, 5(3): 372-382. |
[106] | XU T F, FENG G H, HOU Z Y, et al. Wellbore-reservoir coupled simulation to study thermal and fluid processes in a CO2-based geothermal system: identifying favorable and unfavorable conditions in comparison with water[J]. Environmental Earth Sciences, 2015, 73(11): 6797-6813. |
[107] | SINGH M, TANGIRALA S K, CHAUDHURI A. Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1): 16. |
[108] | OLDENBURG C M. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs[J]. Energy Conversion and Management, 2007, 48(6): 1808-1815. |
[109] | 王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056. |
[110] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[111] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[112] | 张盛生, 张磊, 田成成, 等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 2019, 25(4): 501-508. |
[113] | 刘耀光. 松辽盆地地热场特征与油气勘探的关系[J]. 石油勘探与开发, 1982, 9(3): 26-31. |
[114] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[115] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[116] | WANG G L, GAN H, LIN W J, et al. Hydrothermal systems characterized by crustal thermally‐dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[117] | 蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557. |
[118] | LIN W J, WANG G L, GAN H N, et al. Heat generation and accumulation for hot dry rock resources in the igneous rock distribution areas of southeastern China[J]. Lithosphere, 2022, 2021(Special 5): 2039112 |
[119] | 蔺文静, 陈向阳, 甘浩男, 等. 东南沿海厦门湾—漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报, 2020, 94(7): 2066-2077. |
[120] | ZHAO W T, YUAN Y L, JING T Y, et al. Heat production performance from an enhanced geothermal system (EGS) using CO2 as the working fluid[J]. Energies, 2023, 16(20): 7202. |
[1] | 许家鼎, 张重远, 张浩, 白金朋, 张士安, 张盛生, 秦向辉, 孙东生, 何满潮, 吴满路. 青海共和盆地干热岩地应力测量及其储层压裂改造意义分析[J]. 地学前缘, 2024, 31(6): 130-144. |
[2] | 齐晓飞, 肖勇, 上官拴通, 苏野, 王红科, 李英英, 胡志兴. 马头营深层干热岩人工造储裂缝扩展机理研究与应用[J]. 地学前缘, 2024, 31(6): 224-234. |
[3] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
[4] | 张保建, 雷玉德, 赵振, 唐显春, 罗银飞, 王贵玲, 高俊, 张代磊. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401. |
[5] | 王欣楚, 刘丛强, 李思亮, 徐胜, 丁虎, 庞智勇, 帅燕华. 甲烷团簇同位素研究进展及其在表层地球系统碳循环研究中的应用[J]. 地学前缘, 2023, 30(2): 463-478. |
[6] | 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明, 张盛生, 雷敏, 付国强, 李振宇. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 2023, 30(1): 81-105. |
[7] | 文冬光, 宋健, 刁玉杰, 张林友, 张福存, 张森琦, 叶成明, 朱庆俊, 史彦新, 金显鹏, 贾小丰, 李胜涛, 刘东林, 王新峰, 杨骊, 马鑫, 吴海东, 赵学亮, 郝文杰. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24. |
[8] | 郭清海, 何曈, 庄亚芹, 骆进, 张灿海. 化学刺激法提高花岗岩类岩石裂隙渗透性的实验研究[J]. 地学前缘, 2020, 27(1): 159-169. |
[9] | 庞忠和, 罗霁, 程远志, 段忠丰, 天娇, 孔彦龙, 李义曼, 胡圣标, 汪集旸. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. |
[10] | 天娇, 庞忠和, 张睿. FixAl及同位素方法在EGS返排液研究中的应用[J]. 地学前缘, 2020, 27(1): 112-122. |
[11] | 齐晓飞, 上官拴通, 张国斌, 潘苗苗, 苏野, 田兰兰, 李翔, 乔永超, 张建永. 河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J]. 地学前缘, 2020, 27(1): 94-102. |
[12] | 何治亮, 张英, 冯建赟, 罗军, 李朋威. 基于工程开发原则的干热岩目标区分类与优选[J]. 地学前缘, 2020, 27(1): 81-93. |
[13] | 孙明行, 刘德民, 康志强, 管彦武, 梁国科, 黄锡强, 叶家辉, 郭尚宇, 孙兴庭, 唐维, 冯民豪. 桂东南地区干热型地热资源潜力分析[J]. 地学前缘, 2020, 27(1): 72-80. |
[14] | 康志强, 张起钻, 管彦武, 刘德民, 袁金福, 杨志强, 陆济璞, 王新宇, 张勤军, 张美玲, 冯民豪. 广西干热岩地热资源赋存条件分析[J]. 地学前缘, 2020, 27(1): 55-62. |
[15] | 刘德民, 张根袁, 关俊朋, 张硕, 张婧琪, 孔令昊, 邵俊琦. 苏北盆地干热岩地热资源前景分析[J]. 地学前缘, 2020, 27(1): 48-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||