地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 224-234.DOI: 10.13745/j.esf.sf.2024.7.21

• 地热开发利用技术 • 上一篇    下一篇

马头营深层干热岩人工造储裂缝扩展机理研究与应用

齐晓飞1(), 肖勇2,*(), 上官拴通1, 苏野1, 王红科3, 李英英1, 胡志兴1   

  1. 1.河北省煤田地质局 第二地质队(河北省干热岩研究中心), 河北 邢台 054001
    2.振华石油控股有限公司, 北京 100031
    3.中国石油集团 渤海钻探工程有限公司 工程技术研究院, 天津 300280
  • 收稿日期:2024-01-05 修回日期:2024-04-17 出版日期:2024-11-25 发布日期:2024-11-25
  • 通信作者: *肖 勇(1987—),男,正高级工程师,主要从事地热等相关储层压裂及监测等工作。E-mail: xiaoyongwork@163.com
  • 作者简介:齐晓飞(1988—),男,硕士,高级工程师,主要从事地热地质相关工作。E-mail: xfqi2012@126.com
  • 基金资助:
    国家自然科学基金项目(52004233);四川省自然科学基金项目(2023NSFSC0427);河北重点研发计划项目(20374102D);国家重点研发计划项目(2021YFB1507300)

Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications

QI Xiaofei1(), XIAO Yong2,*(), SHANGGUAN Shuantong1, SU Ye1, WANG Hongke3, LI Yingying1, HU Zhixing1   

  1. 1. The Second Geological Team of Hebei Coal Geology Bureau (Hebei Hot Dry Rock Research Center), Xingtai 054001, China
    2. China ZhenHua Oil CO., Ltd., Beijing 100031, China
    3. Research Institute of Engineering Technology of CNPC Bohai Drilling Engineering Company Limited, Tianjin 300280, China
  • Received:2024-01-05 Revised:2024-04-17 Online:2024-11-25 Published:2024-11-25

摘要:

干热岩具有清洁、稳定、可再生的资源优势和发电潜力,通过水力压裂构建裂缝网络,形成高导流能力人工热储是其高效开发的技术关键。深层干热岩往往是脆、硬,且岩石力学强度高的基底花岗岩,水力压裂破岩能量是传统沉积岩的数倍,难以从传统压裂力学机制上实现张性起裂,裂缝网络扩展是人工造储的核心,主要包括井筒附近的张性起裂、人工裂缝的扩展与岩体失稳和天然裂缝的滑移剪胀。本文以马头营深层干热岩水力压裂人工造储为例,结合岩体地质特征和缝网扩展机理,完成耐温抗剪和破胶性能评价,优选降阻率达到74%的耐高温低黏滑溜水作为主压裂液,剪切稳定后黏度为40 mPa·s的变黏滑溜水作为支撑剂和暂堵转向剂的携砂液;优化15 000 m3压裂液为5个泵注阶段和15个泵注单元,以交替注酸、变黏度剪切造缝和近井筒携砂3种工艺强化缝网扩展;优选200目、2和5 mm不同尺寸可降解暂堵剂促使裂缝均匀扩展;泵注40/70目中密高强度支撑陶粒,在剪切自支撑基础上强化支撑导流。压后评价与微震监测证实,马头营干热岩试验井组水力压裂构建了1 004.03×104 m3的人工热储,包含18条典型相互沟通的裂缝面,裂缝类型为“张—剪”混合裂缝;高黏滑溜水低排量携带的暂堵转向剂,促使远端新裂缝不断开启,增加了纵向的改造程度,且无诱发地震。该水力压裂工程案例的成功实践,证明了多体系小型压裂测试工艺、多阶段逐级提排量主压裂工艺和多方案转向压裂工艺的正确性,为我国干热岩水力压裂人工造储提供了宝贵经验。

关键词: 干热岩, 水力压裂, 人工造储, 裂缝扩展, 马头营

Abstract:

Hot dry rock (HDR) has the advantages of clean, stable, renewable and power generation potential. The construction of fracture network and artificial thermal reservoir through hydraulic fracturing are the key technology to the efficient development of HDR energy. Traditional oil & gas fracturing mechanics are almost unable to induce tensile failure in deep HDR, therefore fracture network initiation and propagation are the key to the construction of artificial reservoirs. The reservoir construction mainly includes tensile fracture initiation near the wellbore, artificial fracture propagation and rock matrix destablization, and natural fracture displacement and dilatation. In this paper, taking the hydraulic fracturing of deep HDR in Matouying as an example, considering the geological characteristics and fracture network expansion mechanism, the temperature resistance, shear resistance and gel breaking performance of the artificial reservoir are evaluated. Low-viscosity slick water with a resistance reduction rate of 74% was selected as the main fracturing fluid, and variable-viscosity slick water with a viscosity of 40 mPa·s after shear stabilization was selected as the sand-slurry fluid for temporary plugging and diverting. Optimized into five pumping stages and 15 units, alternating between three stimulation methods including acid injection, hydraulic-shearing and sand slurry, the total of 15000 m3 fracturing fluids were pumped into reservoir to expand fracture network. Degradable plugging agents with different particle sizes, 200 mesh, 2 mm and 5 mm, were selected to promote uniform expansion of fractures, and 40/70 medium-density, high-strength proppant was optimized to strengthen the support of high conductivity. Post-fracturing evaluation and microseismic monitoring confirmed that a 1004.03×104 m3 artificial heat reservoir was constructed between underground well groups, which contained 18 typical interconnected fractures and the fracture model was “tension-shear”. The plugging agent carried by the high viscosity slick water with low pumping rate promoted the continuous opening of new fractures at the far end, increasing the area of fracture network without inducing earthquakes. The success of this hydraulic fracturing practice validated the use of multifluid mini fracturing testing, multistage step-by-step main fracturing, and multiplan plugging fracturing in the construction of artificial reservoirs. This engineering approach provides a valuable reference for HDR hydraulic fracturing.

Key words: hot dry rock, hydraulic fracturing, artificial thermal reservoir, fracturing propagation, Matouying

中图分类号: