[1] |
郭建春, 肖勇, 蒋恕, 等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报, 2021, 95(5): 1582-1593.
|
[2] |
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica-English Edition, 2023, 97(4): 1003-1013.
|
[3] |
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
|
[4] |
KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14.
|
[5] |
NORBECK J H, MCCLURE M W, HORNE R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149.
|
[6] |
STOBER I. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany[J]. Hydrogeology Journal, 2011, 19(3): 685-699.
|
[7] |
BUCHER K, STOBER I. Large-scale chemical stratification of fluids in the crust: hydraulic and chemical data from the geothermal research site Urach, Germany[J]. Geofluids, 2016, 16(5): 813-825.
|
[8] |
GENTER A, FRITSCH D, CUENOT N, et al. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production[C]//Proceedings of the 34th workshop on geothermal reservoir engineering. Palo Alto: Standford University,2009:1-7.
|
[9] |
GENTER A, EVANS K, CUENOT N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7/8): 502-516.
|
[10] |
TERAKAWA T, MILLER S A, DEICHMANN N. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B7): B07305-1-B07305-15.
|
[11] |
MCMAHON A, BAISCH S, PARADE L. Case study of the seismicity associated with the stimulation of the enhanced geothermal system at Habanero, Australia[C]∥Proceedings of Australian geothermal energy conferences 2013. Brisbane, Australia: AGEC Congress,2013:29-36.
|
[12] |
ZARROUK S J, MOON H. Efficiency of geothermal power plants: a worldwide review[J]. Geothermics, 2014, 51: 142-153.
|
[13] |
PORTIER N, HINDERER J, RICCARDI U, et al. Hybrid gravimetry monitoring of Soultz-sous-Forêts and Rittershoffen geothermal sites (Alsace, France)[J]. Geothermics, 2018, 76: 201-219.
|
[14] |
HACKSTEINF V, MADLENER R. Sustainable operation of geothermal power plants: why economics matters[J]. Geothermal Energy, 2021, 9(1): 10.
|
[15] |
HUANG S P. Geothermal energy in China[J]. Nature Climate Change, 2012, 2(8): 557-560.
|
[16] |
许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947.
|
[17] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
|
[18] |
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
|
[19] |
李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学:中国地质大学学报, 2015, 40(11): 1858-1869.
|
[20] |
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
|
[21] |
王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32.
|
[22] |
蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557.
|
[23] |
郭茂生, 姬长发, 刘宗鑫, 等. 青海共和盆地干热岩热储层人工水力致裂裂缝扩展规律[J]. 西安科技大学学报, 2023, 43(3): 514-522.
|
[24] |
刘汉青, 胡才博, 赵桂萍, 等. 利用热—孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程: 以青海共和盆地恰卜恰地区干热岩开发为例[J]. 地球物理学报, 2023, 66(7): 2887-2902.
|
[25] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI
|
[26] |
齐晓飞, 上官拴通, 张国斌, 等. 河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J]. 地学前缘, 2020, 27(1): 94-102.
DOI
|
[27] |
GUO J C, ZHAO Z H, XIAO Y. The challenge and future development of hydraulic fracturing in deep hot-dry rock in EGS[C]∥Proceedings of ARMA-CUPB geothermal international conference. Beijing: ARMA Congress,2019:9898.
|
[28] |
WANG D B, BIAN X B, QIN H, et al. Experimental investigation of mechanical properties and failure behavior of fluid-saturated hot dry rocks[J]. Natural Resources Research, 2021, 30(1): 289-305.
|
[29] |
XIAO Y, GUO J C, WANG H H, et al. Elastoplastic constitutive model for hydraulic aperture analysis of hydro-shearing in geothermal energy development[J]. SIMULATION: Transactions of The Society for Modeling and Simulation International, 2018.
|
[30] |
肖勇. 增强地热系统中干热岩水力剪切压裂THMC耦合研究[D]. 成都: 西南石油大学, 2017.
|
[31] |
范勇, 赵彦琳, 朱哲明, 等. 基于井筒—射孔模型的地层破裂压力及起裂角的理论研究[J]. 中南大学学报(自然科学版), 2019, 50(3): 669-678.
|
[32] |
SALIMZADEH S, NICK H M. A coupled model for reactive flow through deformable fractures in Enhanced Geothermal Systems[J]. Geothermics, 2019, 81: 88-100.
|
[33] |
孙强, 高千, 张玉良, 等. 干热岩开发中高温水—岩作用下岩石应力腐蚀及多场损伤问题[J]. 地球科学与环境学报, 2023, 45(3): 460-473.
|
[34] |
YOON J S, ZANG A, STEPHANSSON O, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[J]. Procedia Engineering, 2017, 191: 1023-1031.
|
[35] |
王涛, 柳占立, 高岳, 等. 基于给定参数的水力裂缝与天然裂缝相互作用结果的预测准则[J]. 工程力学, 2018, 35(11): 216-222.
|
[36] |
路千里, 刘壮, 郭建春, 等. 水力压裂致套管剪切变形机理及套变量计算模型[J]. 石油勘探与开发, 2021, 48(2): 394-401.
DOI
|
[37] |
GISCHIG V, PREISIG G. Hydro-fracturing versus hydro-shearing: a critical assessment of two distinct reservoir stimulation mechanisms[C]//Proceedings of the 13th international congress of rock mechanics. Salzburg, Austria: ISRM Congress,2015:103.
|