[1] |
JOHNSSON F, KJÄRSTAD J, ROOTZÉN J. The threat to climate change mitigation posed by the abundance of fossil fuels[J]. Climate Policy, 2019, 19(2): 258-274.
|
[2] |
SHINDELL D, SMITH C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 2019, 573(7774): 408-411.
|
[3] |
HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change: a review[J]. Energy Policy, 2013, 52: 797-809.
|
[4] |
ZHOU N, PRICE L, DAI Y D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030[J]. Applied Energy, 2019, 239: 793-819.
|
[5] |
BROCKWAY P E, OWEN A, BRAND-CORREA L I, et al. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nature Energy, 2019, 4(7): 612-621.
|
[6] |
HENRY A, PRASHER R, MAJUMDAR A. Five thermal energy grand challenges for decarbonization[J]. Nature Energy, 2020, 5(9): 635-637.
|
[7] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
|
[8] |
王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660.
|
[9] |
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
|
[10] |
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
|
[11] |
赵军, 李扬, 李浩, 等. 中低温能源在中国[J]. 太阳能学报, 2022, 43(2): 250-260.
DOI
|
[12] |
XU Z Y, WANG R Z, YANG C. Perspectives for low-temperature waste heat recovery[J]. Energy, 2019, 176: 1037-1043.
DOI
|
[13] |
TCHANCHE B F, LAMBRINOS G, FRANGOUDAKIS A, et al. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979.
|
[14] |
王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32.
|
[15] |
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
|
[16] |
KISHORE R A, PRIYA S. A review on low-grade thermal energy harvesting: materials, methods and devices[J]. Materials, 2018, 11(8): 1433.
|
[17] |
EL HAGE H, RAMADAN M, JABER H, et al. A short review on the techniques of waste heat recovery from domestic applications[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 42(24): 3019-3034.
|
[18] |
BARBIER E. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65.
|
[19] |
蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557.
|
[20] |
TOMASINI-MONTENEGRO C, SANTOYO-CASTELAZO E, GUJBA H, et al. Life cycle assessment of geothermal power generation technologies: an updated review[J]. Applied Thermal Engineering, 2017, 114: 1119-1136.
|
[21] |
LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915.
|
[22] |
International Renewable Energy Agency. Renewable capacity statistics 2021[R]. Bonn: IRENA, 2021.
|
[23] |
国家发展改革委, 国家能源局, 财政部, 等. “十四五”可再生能源发展规划[R]. 北京: 国家发展改革委, 国家能源局, 财政部, 自然资源部, 生态环境部, 住房城乡建设部, 农业农村部, 中国气象局, 国家林业和草原局, 2021.
|
[24] |
ZHANG L, CHEN S, ZHANG C, et al. Geothermal power generation in China: status and prospects[J]. Energy Science and Engineering, 2019, 7(5): 1428-1450.
|
[25] |
WANG Y Z, DU Y P, WANG J Y, et al. Comparative life cycle assessment of geothermal power generation systems in China[J]. Resources, Conservation and Recycling, 2020, 155: 104670.
|
[26] |
XIA L Y, ZHANG Y B. An overview of world geothermal power generation and a case study on China: the resource and market perspective[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 411-423.
|
[27] |
JEREMIAH B K M, AKANNI O O. Geothermal wellhead technology power plants in grid electricity generation: a review[J]. Energy Strategy Reviews, 2022, 39: 100735.
|
[28] |
LI T L, LIU Q H, GAO X, et al. Thermodynamic, economic, and environmental performance comparison of typical geothermal power generation systems driven by hot dry rock[J]. Energy Reports, 2022, 8: 2762-2777.
|
[29] |
MOHAMMADI Z, FALLAH M. Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy[J]. Energy, 2023, 282: 128372.
|
[30] |
LI B, XIE H P, SUN L C, et al. Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation[J]. Energy, 2024, 291: 130452.
|
[31] |
AHMADI A, EL HAJ ASSAD M, JAMALI D H, et al. Applications of geothermal organic Rankine Cycle for electricity production[J]. Journal of Cleaner Production, 2020, 274: 122950.
|
[32] |
谢和平, 昂然, 李碧雄, 等. 基于热伏材料中低温地热发电原理与技术构想[J]. 工程科学与技术, 2018, 50(2): 1-12.
|
[33] |
YANG W, XIE H P, SUN L C, et al. An experimental investigation on the performance of TEGs with a compact heat exchanger design towards low-grade thermal energy recovery[J]. Applied Thermal Engineering, 2021, 194: 117119.
|
[34] |
XIE H P, GAO T Y, LONG X T, et al. Design and performance of a modular 1 kilowatt-level thermoelectric generator for geothermal application at medium-low temperature[J]. Energy Conversion and Management, 2023, 298: 117782.
|
[35] |
GOU X L, XIAO H, YANG S W. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy, 2010, 87(10): 3131-3136.
|
[36] |
TOHIDI F, GHAZANFARI HOLAGH S, CHITSAZ A. Thermoelectric generators: a comprehensive review of characteristics and applications[J]. Applied Thermal Engineering, 2022, 201: 117793.
|
[37] |
PATIL D S, ARAKERIMATH R R, WALKE P V. Thermoelectric materials and heat exchangers for power generation: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 1-22.
|
[38] |
ALGHOUL M A, SHAHAHMADI S A, YEGANEH B, et al. A review of thermoelectric power generation systems: roles of existing test rigs/prototypes and their associated cooling units on output performance[J]. Energy Conversion and Management, 2018, 174: 138-156.
|
[39] |
陈立东, 刘睿恒, 史讯. 热电材料与器件[M]. 北京: 科学出版社, 2018.
|
[40] |
LIAO J X, XIE H P, WANG J, et al. Effect of operating conditions on the output performance of a compact TEG for low-grade geothermal energy utilization[J]. Applied Thermal Engineering, 2024, 236: 121878.
|
[41] |
JI D X, CAI H T, YE Z H, et al. Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: a Techno-economic analysis[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102914.
|
[42] |
ZEBARJADI M, ESFARJANI K, DRESSELHAUS M S, et al. Perspectives on thermoelectrics: from fundamentals to device applications[J]. Energy and Environmental Science, 2012, 5(1): 5147-5162.
|
[43] |
HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997.
|