地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 154-162.DOI: 10.13745/j.esf.sf.2021.11.3
收稿日期:
2020-11-30
修回日期:
2021-09-14
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
李江海
作者简介:
刘磊鑫(1995—),男,硕士,石油地质学专业。E-mail: 18810556595@163.com
基金资助:
LIU Leixin1,2(), LI Jianghai1,2,*(
), MA Changming1,2
Received:
2020-11-30
Revised:
2021-09-14
Online:
2023-03-25
Published:
2023-01-05
Contact:
LI Jianghai
摘要:
扬子板块在新元古代时期作为Rodinia超大陆的重要组成部分,其位置一直存在争议。为探讨扬子板块在新元古代晚期的位置,综合前人发表过的古地磁数据,利用古地磁研究方法,对扬子板块与澳大利亚板块、印度板块在新元古代晚期的相对位置关系进行研究。根据地层对比、锆石测年等诸多证据,将扬子板块置于印度板块北缘(现今位置)、澳大利亚板块西北缘(现今位置)。基于扬子、印度、澳大利亚运动学特征分析,认为扬子板块在Rodinia超大陆裂解时运动至高纬度地区,750~635 Ma期间,扬子板块处于中高纬度地区,在635 Ma时开始快速向低纬度地区运动。虽然将扬子置于印度北缘,但认为二者并不相连,而是到了570 Ma左右发生碰撞后连接到一起,并一同加入冈瓦纳大陆。
中图分类号:
刘磊鑫, 李江海, 马昌明. 扬子板块、澳大利亚板块、印度板块在新元古代晚期(750~540 Ma)古板块再造:来自古地磁制约[J]. 地学前缘, 2023, 30(2): 154-162.
LIU Leixin, LI Jianghai, MA Changming. Reconstruction of the Yangtze, Australian and Indian plates in the Late Neoproterozoic (750-540 Ma) using paleomagnetic constraints[J]. Earth Science Frontiers, 2023, 30(2): 154-162.
图1 Rodinia超大陆750 Ma主要板块再造图(据文献[6]修改) AM—亚马孙板块;BA—波罗的板块;CO-SF—刚果-圣弗朗西斯科板块;KA—卡拉哈利板块;EA—东南极板块;NA—北澳大利亚板块;SA—南澳大利亚板块;WA—西澳大利亚板块;IN—印度板块;NC—华北板块;SC—华南板块;SB—西伯利亚板块;TA—塔里木板块;WAF—西非板块;LA—劳伦板块。
Fig.1 Reconstruction of major tectonic plates beneath the supercontinent Rodinia at 750 Ma. Modified from [6].
板块名称 | 时代/Ma | 古地磁极纬度/(°) | 古地磁极经度/(°) | A95 | Q值 | 参考文献 |
---|---|---|---|---|---|---|
扬子板块 | 748±12 | 13.9 | 165.3 | 9.6 | 4 | [ |
扬子板块 | 735±30 | 9.9 | 160.3 | 4.6 | 7 | [ |
扬子板块 | 730±15 | 12.7 | 157.4 | 5.2 | 6 | [ |
扬子板块 | 705 | 13.2 | 155.2 | 5.3 | 6 | [ |
扬子板块 | 641±10 | 7.5 | 161.6 | 5.9 | 7 | [ |
扬子板块 | 635 | 9.3 | 165.9 | 4.3 | 7 | [ |
扬子板块 | 595±9 | 25.9 | 185.5 | 6.7 | 6 | [ |
扬子板块 | 520±11 | -51.3 | 166.0 | 6.8 | 7 | [ |
澳大利亚板块 | 755±3 | 45.3 | 135.4 | 4.1 | 5 | [ |
澳大利亚板块 | 660±20 | 47.1 | 176.6 | 5.3 | 6 | [ |
澳大利亚板块 | 650±15 | 44.2 | 172.0 | 5.9 | 7 | [ |
澳大利亚板块 | 635 | 43.7 | 179.3 | 3.3 | 5 | [ |
澳大利亚板块 | 625±10 | 32.3 | 170.8 | 3.2 | 7 | [ |
澳大利亚板块 | 609±10 | 46.0 | 135.4 | 3.7 | 6 | [ |
澳大利亚板块 | 590±20 | 18.1 | 196.3 | 8.8 | 7 | [ |
澳大利亚板块 | 556±24 | 5.2 | 210.5 | 5.4 | 5 | [ |
澳大利亚板块 | 535 | -21.3 | 14.9 | 11.4 | 5 | [ |
印度板块 | 758±3 | 74.5 | 71.2 | 6.4 | 4 | [ |
印度板块 | 750±20 | 67.8 | 72.5 | 8.8 | 5 | [ |
印度板块 | 650±20 | 47.3 | 212.7 | 5.8 | 5 | [ |
印度板块 | 600 | 81.0 | 259.0 | 5.0 | 6 | [ |
印度板块 | 589 | 74.0 | 54.0 | 4.0 | 4 | [ |
印度板块 | 570 | 85.0 | 206.0 | 4.0 | 5 | [ |
印度板块 | 530 | -25.3 | 72.2 | 10.0 | 4 | [ |
印度板块 | 527 | 7.0 | 347.0 | 6.0 | 4 | [ |
表1 扬子、澳大利亚、印度板块新元古代晚期古地磁数据表
Table 1 Paleomagnetic data for the Yangtze, Australia and India plates in the Late Neoproterozoic
板块名称 | 时代/Ma | 古地磁极纬度/(°) | 古地磁极经度/(°) | A95 | Q值 | 参考文献 |
---|---|---|---|---|---|---|
扬子板块 | 748±12 | 13.9 | 165.3 | 9.6 | 4 | [ |
扬子板块 | 735±30 | 9.9 | 160.3 | 4.6 | 7 | [ |
扬子板块 | 730±15 | 12.7 | 157.4 | 5.2 | 6 | [ |
扬子板块 | 705 | 13.2 | 155.2 | 5.3 | 6 | [ |
扬子板块 | 641±10 | 7.5 | 161.6 | 5.9 | 7 | [ |
扬子板块 | 635 | 9.3 | 165.9 | 4.3 | 7 | [ |
扬子板块 | 595±9 | 25.9 | 185.5 | 6.7 | 6 | [ |
扬子板块 | 520±11 | -51.3 | 166.0 | 6.8 | 7 | [ |
澳大利亚板块 | 755±3 | 45.3 | 135.4 | 4.1 | 5 | [ |
澳大利亚板块 | 660±20 | 47.1 | 176.6 | 5.3 | 6 | [ |
澳大利亚板块 | 650±15 | 44.2 | 172.0 | 5.9 | 7 | [ |
澳大利亚板块 | 635 | 43.7 | 179.3 | 3.3 | 5 | [ |
澳大利亚板块 | 625±10 | 32.3 | 170.8 | 3.2 | 7 | [ |
澳大利亚板块 | 609±10 | 46.0 | 135.4 | 3.7 | 6 | [ |
澳大利亚板块 | 590±20 | 18.1 | 196.3 | 8.8 | 7 | [ |
澳大利亚板块 | 556±24 | 5.2 | 210.5 | 5.4 | 5 | [ |
澳大利亚板块 | 535 | -21.3 | 14.9 | 11.4 | 5 | [ |
印度板块 | 758±3 | 74.5 | 71.2 | 6.4 | 4 | [ |
印度板块 | 750±20 | 67.8 | 72.5 | 8.8 | 5 | [ |
印度板块 | 650±20 | 47.3 | 212.7 | 5.8 | 5 | [ |
印度板块 | 600 | 81.0 | 259.0 | 5.0 | 6 | [ |
印度板块 | 589 | 74.0 | 54.0 | 4.0 | 4 | [ |
印度板块 | 570 | 85.0 | 206.0 | 4.0 | 5 | [ |
印度板块 | 530 | -25.3 | 72.2 | 10.0 | 4 | [ |
印度板块 | 527 | 7.0 | 347.0 | 6.0 | 4 | [ |
图2 扬子、澳大利亚、印度板块新元古代晚期视极移曲线图(正交投影) (a)—扬子板块新元古代晚期视极移曲线图;(b)—扬子板块新元古代晚期视极移曲线图(平滑处理);(c)—澳大利亚板块新元古代晚期视极移曲线图(平滑处理);(d)—印度板块新元古代晚期视极移曲线图(平滑处理)。
Fig.2 APWPs (Apparent Polar Wander Path) for the Yangtze, Australia and India plates in the Late Neoproterozoic
图3 扬子板块、澳大利亚板块、印度板块新元古代晚期古板块再造图 YG—扬子板块;CA—华夏板块;IN—印度板块;AU—澳大利亚板块。
Fig.2 Reconstruction of the Yangtze, Australian and Indian plates in the Late Neoproterozoic
[1] |
ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the east Asian blocks: from the breakup of rodinia to the assembly of pangea[J]. Earth-Science Reviews, 2018, 186: 262-286.
DOI URL |
[2] |
CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 2016, 449: 118-126.
DOI URL |
[3] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[4] |
TORSVIK T H, COCKS L R M. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030.
DOI URL |
[5] | TORSVIK T H, COCKS L R M. Earth History and Palaeogeography[M]. Cambridge: Cambridge University Press, 2016. |
[6] |
ZHANG S H, EVANS D A D, LI H Y, et al. Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block[J]. Journal of Asian Earth Sciences, 2013, 72: 164-177.
DOI URL |
[7] |
LI Z X, ZHANG L H, POWELL C M. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 1995, 23(5): 407-410.
DOI URL |
[8] |
LI Z X, EVANS D A D. Late Neoproterozoic 40 intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia[J]. Geology, 2011, 39(1): 39-42.
DOI URL |
[9] |
YANG Z Y, SUN Z M, YANG T, et al. A long connection (750-380 Ma) between South China and Australia: paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 423-434.
DOI URL |
[10] |
ZHANG S H, LI H Y, JIANG G Q, et al. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research, 2015, 259: 130-142.
DOI URL |
[11] |
TORSVIK T H. The Rodinia jigsaw puzzle[J]. Science, 2003, 300(5624): 1379-1381.
DOI URL |
[12] |
YANG F L, ZHOU X F, PENG Y X, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: an overview[J]. Precambrian Research, 2020, 337: 105563.
DOI URL |
[13] |
LI S Z, LI X Y, WANG G Z, et al. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: constraints from three cratons in China[J]. Earth-Science Reviews, 2019, 198: 102946.
DOI URL |
[14] |
MERDITH A S, COLLINS A S, WILLIAMS S E, et al. A full-plate global reconstruction of the Neoproterozoic[J]. Gondwana Research, 2017, 50: 84-134.
DOI URL |
[15] |
CAWOOD P A, WANG Y J, XU Y J, et al. Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
DOI URL |
[16] | PISAREVSKY S A, WINGATE M T D, POWELL C M, et al. Models of Rodinia assembly and fragmentation[M]. Proterozoic East Gondwana: Supercontinent Assembly and Breakup, 2003. |
[17] |
COLLINS A S, PISAREVSKY S A. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens[J]. Earth-Science Reviews, 2005, 71(3/4): 229-270.
DOI URL |
[18] |
LUO L, ZENG L B, WANG K, et al. Detrital zircon provenance investigation from the Neoproterozoic successions of the South China Block: Paleogeographic implications[J]. Journal of Geodynamics, 2019, 124: 25-37.
DOI URL |
[19] |
TORSVIK T H. Earth history: a journey in time and space from base to top[J]. Tectonophysics, 2019, 760: 297-313.
DOI |
[20] | 王洪浩, 李江海, 周肖贝, 等. 塔里木陆块在Rodinia超大陆中位置的新认识: 来自地层对比和古地磁的制约[J]. 地球物理学报, 2015, 58(2): 589-600. |
[21] |
VAN DER VOO R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1): 1-9.
DOI URL |
[22] |
EVANS D A D, LI Z X, KIRSCHVINK J L, et al. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia[J]. Precambrian Research, 2000, 100(1/2/3): 313-334.
DOI URL |
[23] |
JING X Q, YANG Z Y, TONG Y B, et al. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 2015, 268: 194-211.
DOI URL |
[24] |
WINGATE M T D, GIDDINGS J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma[J]. Precambrian Research, 2000, 100(1/2/3): 335-357.
DOI URL |
[25] |
WILLIAMS G E, SCHMIDT P W. Low paleolatitude for the late cryogenian interglacial succession, south Australia: paleomagnetism of the Angepena formation, Adelaide geosyncline[J]. Australian Journal of Earth Sciences, 2015, 62(2): 243-253.
DOI URL |
[26] |
LI Z X, EVANS D A D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232.
DOI URL |
[27] |
SCHMIDT P W, WILLIAMS G E, MCWILLIAMS M O. Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System[J]. Precambrian Research, 2009, 174(1/2): 35-52.
DOI URL |
[28] |
SCHMIDT P W, WILLIAMS G E. Ediacaran palaeomagnetism and apparent polar wander path for Australia: no large true polar wander[J]. Geophysical Journal International, 2010, 182(2): 711-726.
DOI URL |
[29] |
SCHMIDT P W, WILLIAMS G E. Palaeomagnetism of the ejecta-bearing Bunyeroo Formation, late Neoproterozoic, Adelaide fold belt, and the age of the Acraman impact[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 347-357.
DOI URL |
[30] |
TORSVIK T H, VAN DER VOO R, PREEDEN U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012, 114(3/4): 325-368.
DOI URL |
[31] |
MEERT J G. Growing Gondwana and rethinking Rodinia: a paleomagnetic perspective[J]. Gondwana Research, 2001, 4(3): 279-288.
DOI URL |
[32] |
GREGORY L C, MEERT J G, BINGEN B, et al. Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana[J]. Precambrian Research, 2009, 170(1/2): 13-26.
DOI URL |
[33] |
MCELHINNY M W, COWLEY J A, EDWARDS D J. Palaeomagnetism of some rocks from peninsular India and Kashmir[J]. Tectonophysics, 1978, 50(1): 41-54.
DOI URL |
[34] |
PIVARUNAS A F, MEERT J G, PANDIT M K, et al. Paleomagnetism and geochronology of mafic dykes from the southern granulite terrane, India: expanding the dharwar craton southward[J]. Tectonophysics, 2019, 760: 4-22.
DOI URL |
[35] |
DAVIS J K, MEERT J G, PANDIT M K. Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations[J]. Journal of Asian Earth Sciences, 2014, 91: 339-351.
DOI URL |
[36] | 侯方辉, 张训华, 温珍河, 等. 古生代以来中国主要块体活动古地理重建及演化[J]. 海洋地质与第四纪地质, 2014, 34(6): 9-26. |
[37] | TORSVIK T H, SMETHURST M A. Plate tectonic modelling: virtual reality with GMAP[J]. Computers and Geosciences, 1999, 25(4): 395-402. |
[38] |
DOMEIER M, TORSVIK T H. Plate tectonics in the Late Paleozoic[J]. Geoscience Frontiers, 2014, 5(3): 303-350.
DOI URL |
[39] | 叶云涛, 王华建, 翟俪娜, 等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报, 2017, 35(2): 203-216. |
[40] |
JIANG G Q, SOHL L E, CHRISTIE-BLICK N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920.
DOI URL |
[41] |
POWELL C M, PISAREVSKY S A. Late neoproterozoic assembly of east Gondwana[J]. Geology, 2002, 30(1): 3-6.
DOI URL |
[42] |
LI Z X, EVANS D A D, ZHANG S. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 409-421.
DOI URL |
[43] |
YAO W H, LI Z X, LI W X, et al. From Rodinia to Gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278-313.
DOI URL |
[1] | 翟明国, 胡波, 彭澎, 赵太平. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 20140101, 21(1): 100-119. |
[2] | 李光洁, 陈永清, 尚志, 刘世博. 扬子地块西缘峨山新元古代高分异I型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
[3] | 何碧竹, 焦存礼, 刘若涵, 曹自成, 蔡志慧, 兰明杰, 贠晓瑞, 朱定, 姜忠正, 杨玉杰, 李振宇. 塔里木盆地新元古代构造古地理及深层有利烃源岩发育区预测[J]. 地学前缘, 2023, 30(4): 19-42. |
[4] | 杨昆昆, 李海燕, 赵汉卿, 褚润健, 刘光泓, 吴怀春, 张世红. 西澳大利亚新元古代Browne组—Hussar组旋回地层学研究[J]. 地学前缘, 2023, 30(3): 441-451. |
[5] | 杨风丽, 徐铭辰, 庄圆, 赵西西, 胡虞杨, 杨瑞青. 古生代中国中西部三大陆块古地理位置重建与演变[J]. 地学前缘, 2022, 29(6): 265-276. |
[6] | 李路顺, 汪泽成, 肖安成, 胡安平, 陈友智, 王芊芊. 扬子板块北缘新元古代盆地结构与马槽园群归属研究[J]. 地学前缘, 2022, 29(6): 291-304. |
[7] | 栗兵帅, 颜茂都, 张伟林. 柴北缘早新生代旋转变形特征及其构造意义[J]. 地学前缘, 2022, 29(4): 249-264. |
[8] | 李王鹏, 李慧莉, 王毅, 刘少峰, 张仲培, 杨伟利, 蔡习尧, 钱涛, 李晓剑. 塔里木盆地西南缘叶城地区新元古代冰期事件[J]. 地学前缘, 2022, 29(3): 356-380. |
[9] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[10] | 张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义:从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266. |
[11] | 华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航. 新元古代末期高家山生物群的生态多样性[J]. 地学前缘, 2020, 27(6): 28-46. |
[12] | 朱强, 施珂, 吴礼彬, 江来利, 胡召齐, 徐生发, 翁望飞. 扬子板块新元古代中期的持续俯冲作用:来自南华纪岛弧火山岩年代学和岩石地球化学新证据[J]. 地学前缘, 2020, 27(4): 17-32. |
[13] | 彭润民, 王建平. 华北克拉通北缘西段新元古代裂谷的确认与成矿[J]. 地学前缘, 2020, 27(2): 420-441. |
[14] | 包洪平,邵东波,郝松立,章贵松,阮正中,刘刚,欧阳征健. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019, 26(1): 33-43. |
[15] | 许晨光,颜丹平,古术航,孟祥坤,邱亮,Michael L.WELLS. 扬子板块西北缘碧口地块中—新生代变质、变形与年代限定[J]. 地学前缘, 2018, 25(1): 80-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||