地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 28-46.DOI: 10.13745/j.esf.sf.2020.6.2
华洪1(), 蔡耀平1, 闵筱2, 柴姝1, 代乔坤1, 崔再航1
收稿日期:
2020-03-27
修回日期:
2020-05-29
出版日期:
2020-11-02
发布日期:
2020-11-02
作者简介:
华 洪(1966—),男,教授,博士生导师,主要从事前寒武纪古生物学与地层学的研究。E-mail: huahong@nwu.edu.cn
基金资助:
HUA Hong1(), CAI Yaoping1, MIN Xiao2, CHAI Shu1, DAI Qiaokun1, CUI Zaihang1
Received:
2020-03-27
Revised:
2020-05-29
Online:
2020-11-02
Published:
2020-11-02
摘要:
新元古代末期是生命演化的关键转折期,也是以微生物占主导的生态系统向显生宙以后生动物占主导的生态系统的转变期,埃迪卡拉纪大型软躯体生物以固着、底栖、食悬浮为特色,普遍缺乏运动能力。作为这一时期特殊代表的高家山生物群,是目前新元古代唯一一个以黄铁矿化三维保存的管状和锥管状化石为主导,兼有骨骼生物、原生动物、钙化蓝细菌类及遗迹化石的多门类生物组合,是研究埃迪卡拉纪末期生命演化和生态系统演变十分重要的载体。本文通过对高家山生物群古生态学的初步研究,揭示出在前寒武纪—寒武纪之交,生态系统已显示一定的多样性。为适应平底面上(level-bottom)微生物席的发育,高家山生物群的许多生物采取了适应性的生存策略,通过黏附或插入微生物席中,营底栖固着食悬浮(如Cloudina、Conotubus)或化学共生(可能的Shaanxilithes)或平躺(如Gaojiashania和Sinotubulites)食碎屑生活。底内遗迹化石表明存在可能的表栖和半内栖、可自由运动、食碎屑的造迹生物。Conotubus中常见的“回春”或“复苏”现象,Gaojiashania和Sinotubulites的身体扭转或生活姿态调整则是对频繁风暴事件的被动适应。
中图分类号:
华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航. 新元古代末期高家山生物群的生态多样性[J]. 地学前缘, 2020, 27(6): 28-46.
HUA Hong, CAI Yaoping, MIN Xiao, CHAI Shu, DAI Qiaokun, CUI Zaihang. Ecological diversity in the terminal Ediacaran Gaojiashan biota[J]. Earth Science Frontiers, 2020, 27(6): 28-46.
图2 高家山—牛落坑剖面灯影组高家山段下部野外剖面 层位1~5,图中黑色线条表示高家山段起始层位。
Fig.2 Outcrop of the lower Gaojiashan Member in the Dengying Formation of the Gaojishan-Niuluokeng section
图3 高家山—牛落坑剖面灯影组高家山段中上部野外剖面 层位6~9,图中黑色线条表示高家山段终结层位。
Fig.3 Outcrop of the middle and upper Gaojiashan Member in the Dengying Formation of the Gaojishan-Niuluokeng section
图4 高家山段事件沉积与微生物岩构造(部分图件据文献[20,23]修改) (a)—黄绿色粉砂岩中的正粒序。(b)—Gaojiashania化石保存于风暴事件层中的正粒序粉砂岩中,上部的均一块状泥质岩中未见化石。(c)—黄铁矿化Conotubus化石产出在微生物席覆盖的粉砂岩中,显示多角状MISS构造。(d)—群集的黄铁矿化Conotubus管体保存于风暴事件层中的正粒序粉砂岩中,箭头所示为粉砂岩层底面上出现的石英颗粒层。(e)—定向(顶面朝上)的手标本显示两套粉砂岩-泥岩构成的层偶。数字示意每层粉砂岩层的底面。层偶由下部发育正粒序的粉砂岩层和上部的均一块状泥岩层构成。粉砂岩层的底面与下伏岩层界线截然,顶面与上覆岩层呈过渡关系。(f)—高家山段上部发育具明暗交替纹层的微生物灰岩。
Fig.4 Event deposits and MISS structures. Partially modified from [20,23].
属种名称 | 属性 | 形态特征 | 生态类型 | 生活方式 | 生态位 | |||||
---|---|---|---|---|---|---|---|---|---|---|
管状动物化石 | Cloudina | 可能多毛类 | 漏斗套漏斗锥管状结构,具矿化壁 | 底栖 | 固着滤食 | 初级消费者 | ||||
Conotubus | 可能多毛类 | 漏斗套漏斗锥管状结构,有机质壁 | 底栖 | 固着滤食 | 初级消费者 | |||||
Gaojiashania | 后生动物 | 由一系列坚硬的圆环构成的空心管体,圆环间由软体组织连接 | 表栖 | 游移食腐殖质 | 初级消费者 | |||||
Sinotubulites | 可能多毛类 | 管套管结构; 多层壁,表面具纵脊及横向皱褶 | 表栖 | 滤食或食腐殖质 | 初级消费者 | |||||
Shaanxilithes | 后生动物化石 | 带状构造,一系列片状构造组合 | 底栖 | 固着化学共生 | 自养 | |||||
瓶状化石 | Protolagena | 原生动物,可能有孔虫 | 瓶状,颈长短不一,颈短,口缘圆滑或具外翻的漏斗状口缘 | 底栖 | 滤食 | 初级消费者 | ||||
Sicylagena | 原生动物,可能有孔虫 | 亚葫芦状, 具颈、口孔居中或侧位 | 底栖 | 滤食 | 初级消费者 | |||||
蓝 细 菌 或 藻 类 化 石 | Obruchevella | 钙化蓝细菌 | 螺旋状盘卷管丝体 | 底栖 | 固着 | 生产者 | ||||
Eiphyton | 钙化蓝细菌 | 二歧式分枝管丝体 | 底栖 | 固着 | 生产者 | |||||
Cambricodium | 钙化蓝细菌 | 束发状管丝体 | 底栖 | 固着 | 生产者 | |||||
Girvanella | 钙化蓝细菌 | 相互缠绕管丝体 | 底栖 | 固着 | 生产者 | |||||
遗迹化石 | Bucerusichnus | 动物遗迹 | 可能垂直潜穴 | 底内 | 食腐殖质 | 初级消费者 | ||||
Planolites | 动物遗迹 | 简单表生爬迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
Helminthopsis | 可能遗迹化石 | 蛇曲形遗迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
可能的小壳化石先驱 | Anabarites sp. | 动物化石 | 三个管规则旋卷 | 底栖 | 食腐殖质 | 初级消费者 | ||||
Paragloborilus sp. | 动物化石 | 圆锥形,始部球形肿大 | 底栖 | 食腐殖质 | 初级消费者 |
表1 高家山生物群已知化石类群及其初步认识
Table 1 List of distinct taxa in the Gaojiashan biota and their possible interpretation
属种名称 | 属性 | 形态特征 | 生态类型 | 生活方式 | 生态位 | |||||
---|---|---|---|---|---|---|---|---|---|---|
管状动物化石 | Cloudina | 可能多毛类 | 漏斗套漏斗锥管状结构,具矿化壁 | 底栖 | 固着滤食 | 初级消费者 | ||||
Conotubus | 可能多毛类 | 漏斗套漏斗锥管状结构,有机质壁 | 底栖 | 固着滤食 | 初级消费者 | |||||
Gaojiashania | 后生动物 | 由一系列坚硬的圆环构成的空心管体,圆环间由软体组织连接 | 表栖 | 游移食腐殖质 | 初级消费者 | |||||
Sinotubulites | 可能多毛类 | 管套管结构; 多层壁,表面具纵脊及横向皱褶 | 表栖 | 滤食或食腐殖质 | 初级消费者 | |||||
Shaanxilithes | 后生动物化石 | 带状构造,一系列片状构造组合 | 底栖 | 固着化学共生 | 自养 | |||||
瓶状化石 | Protolagena | 原生动物,可能有孔虫 | 瓶状,颈长短不一,颈短,口缘圆滑或具外翻的漏斗状口缘 | 底栖 | 滤食 | 初级消费者 | ||||
Sicylagena | 原生动物,可能有孔虫 | 亚葫芦状, 具颈、口孔居中或侧位 | 底栖 | 滤食 | 初级消费者 | |||||
蓝 细 菌 或 藻 类 化 石 | Obruchevella | 钙化蓝细菌 | 螺旋状盘卷管丝体 | 底栖 | 固着 | 生产者 | ||||
Eiphyton | 钙化蓝细菌 | 二歧式分枝管丝体 | 底栖 | 固着 | 生产者 | |||||
Cambricodium | 钙化蓝细菌 | 束发状管丝体 | 底栖 | 固着 | 生产者 | |||||
Girvanella | 钙化蓝细菌 | 相互缠绕管丝体 | 底栖 | 固着 | 生产者 | |||||
遗迹化石 | Bucerusichnus | 动物遗迹 | 可能垂直潜穴 | 底内 | 食腐殖质 | 初级消费者 | ||||
Planolites | 动物遗迹 | 简单表生爬迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
Helminthopsis | 可能遗迹化石 | 蛇曲形遗迹 | 底内 | 食腐殖质 | 初级消费者 | |||||
可能的小壳化石先驱 | Anabarites sp. | 动物化石 | 三个管规则旋卷 | 底栖 | 食腐殖质 | 初级消费者 | ||||
Paragloborilus sp. | 动物化石 | 圆锥形,始部球形肿大 | 底栖 | 食腐殖质 | 初级消费者 |
图5 Cloudina形态学特征 a—薄片显示管体套合特征;b, c—扫描电镜显示Cloudina的漏斗套漏斗结构;d—Cloudina漏斗套漏斗结构及生长方向的转变,可能仅末端始终向上;e—箭头所示为Cloudina管体上的生物钻孔。
Fig.5 Growth patterns of Cloudina tubes
图6 Conotubus形态学特征(b、c据文献[12]) a—弯曲生长的Conotubus化石,可能仅开口端的管节直立伸向水体中;b, c—黄铁矿化的Conotubus化石标本,箭头所示为可能的“回春”或“复苏”现象;d—薄片显示的Conotubus漏斗套漏斗结构及可能的“回春”或“复苏”现象:可能仅末端始终向上;e—黄铁矿化的Conotubus化石标本。
Fig.6 Growth patterns of Conotubus tubes. b and c adapted from [12].
图7 Gaojiashania形态学特征 a—弯曲生长的黄铁矿化Gaojiashania,显示管体可能具一定的柔韧性;b—叠压的圆环或管体碎片;c—Gaojiashania化石,显示加厚的圆环;d—黄铁矿化保存的Gaojiashania化石,显示加厚的圆环和环间细纹;e—平行粉砂岩-泥岩层面产出的至少5个Gaojiashania化石个体组成的化石群体。化石标本均以有机碳质压膜-黏土矿物方式保存。
Fig.7 Growth patterns of Gaojiashania tubes
图8 Sinotubulites形态学特征 a,b—弯曲生长的Sinotubulites,红色虚线显示管体具一定程度的扭曲,推测为风暴事件沉积后为防止被悬浮的碎屑掩埋,管体的被动姿态调整;c—3-辐射状Sinotubulites管体,可能为增大平躺贴合面积;d—Sinotubulites管体横切面薄片,显示多层套合管体特征,内部管壁平直,外部通过部分加厚形成皱褶。
Fig.8 Growth patterns of Sinotubulites tubes
图10 瓶状化石形态学特征 a,c—虚线显示示顶底构造,近于30°与沉积底面斜交,可能反映口部朝下以一定角度斜交黏附在藻席覆盖的基底上生长的特征;b—示顶底构造,瓶口部碎屑物充填;d—瓶状化石扫描电镜照片。
Fig.10 Growth patterns of vase-shaped microfossils
图11 磷酸盐化保存的钙化蓝细菌(据文献[17,18]) a—Obruchevella显示左旋的旋卷特征;b—复杂树丛状分枝Epiphyton管体,分枝角约30°~45°;c, d—Girvanella,显示空心的束状丝体;e—Cambricodium,管状丝状体形成的束状群体;f—Subtifloria,排列成束的管状。
Fig.11 SEM images of phosphatized calcified cyanobacteria. Adapted from [17-18].
生态分类 | 特征描述 | 高家山生物群动物化石代表 | |
---|---|---|---|
营 养 层 | 1.浮游游泳 | 生活在脱离基底的水体中 | |
2.底栖直立 | 底栖,直立于水体中生活 | Conotubus,Shaanxilithes | |
3.表栖 | 在基底表面生活,不明显向上生长 | Cloudina,Sinotubulites,Gaojiashania,遗迹化石 | |
4.半内栖 | 半埋半暴露在水体中生活 | 遗迹化石 | |
5.浅表内栖 | 在基底-水界面下5 cm之内的沉积物中生活 | 遗迹化石 | |
6.深部内栖 | 在基底之下大于5 cm的沉积物内生活 | ||
活 动 能 力 | 1.自由快速运动 | 有规律地不受阻碍的移动或游移 | |
2. 自由慢速运动 | 有规律地移动,与基底保持紧密接触 | 瓶状化石 | |
3.兼性非固着 | 只有在必要的时候才会移动,自由平躺 | ||
4.兼性固着 | 固着生活,只有在必要的时候才移动 | Sinotubulites,Gaojiashania | |
5.非固着,不能移动 | 不具备自我推移的能力,平躺生活 | ||
6. 固着,不能移动 | 不具备自我推移的能力,固着生活 | Cloudina,Conotubus,Shaanxilithes | |
取 食 策 略 | 1.食悬浮 | 捕捉水中的悬浮食物颗粒 | Cloudina,Conotubus,瓶状化石 |
2.底表食碎屑 | 从基底上捕捉松散的颗粒 | Sinotubulites,Gaojiashania | |
3.底内挖掘 | 在基底内取食埋在地下的食物 | 根据遗迹化石推测 | |
4.牧食 | 从基质上刮削或啃食食物 | ||
5. 捕食 | 捕获具一定抵抗力的生物 | Cloudina管体表明的钻孔 | |
6. 其他营养方式 | 包括光合自养或化学共生及寄生等多种类型 | Shaanxilithes? |
表2 根据营养阶层、运动方式及取食策略对高家山生物群相关动物生态类型划分
Table 2 Ecological categories in the Gaojiashan biota based on tiering position, motility level and feeding mechanism
生态分类 | 特征描述 | 高家山生物群动物化石代表 | |
---|---|---|---|
营 养 层 | 1.浮游游泳 | 生活在脱离基底的水体中 | |
2.底栖直立 | 底栖,直立于水体中生活 | Conotubus,Shaanxilithes | |
3.表栖 | 在基底表面生活,不明显向上生长 | Cloudina,Sinotubulites,Gaojiashania,遗迹化石 | |
4.半内栖 | 半埋半暴露在水体中生活 | 遗迹化石 | |
5.浅表内栖 | 在基底-水界面下5 cm之内的沉积物中生活 | 遗迹化石 | |
6.深部内栖 | 在基底之下大于5 cm的沉积物内生活 | ||
活 动 能 力 | 1.自由快速运动 | 有规律地不受阻碍的移动或游移 | |
2. 自由慢速运动 | 有规律地移动,与基底保持紧密接触 | 瓶状化石 | |
3.兼性非固着 | 只有在必要的时候才会移动,自由平躺 | ||
4.兼性固着 | 固着生活,只有在必要的时候才移动 | Sinotubulites,Gaojiashania | |
5.非固着,不能移动 | 不具备自我推移的能力,平躺生活 | ||
6. 固着,不能移动 | 不具备自我推移的能力,固着生活 | Cloudina,Conotubus,Shaanxilithes | |
取 食 策 略 | 1.食悬浮 | 捕捉水中的悬浮食物颗粒 | Cloudina,Conotubus,瓶状化石 |
2.底表食碎屑 | 从基底上捕捉松散的颗粒 | Sinotubulites,Gaojiashania | |
3.底内挖掘 | 在基底内取食埋在地下的食物 | 根据遗迹化石推测 | |
4.牧食 | 从基质上刮削或啃食食物 | ||
5. 捕食 | 捕获具一定抵抗力的生物 | Cloudina管体表明的钻孔 | |
6. 其他营养方式 | 包括光合自养或化学共生及寄生等多种类型 | Shaanxilithes? |
图12 高家山生物群生态空间占用与埃迪卡拉白海组合、纳玛组合及现代海洋动物对比(改自文献[82,112])
Fig.12 Ecospace occupancy in the Gaojiashan biota, as compared with the White Sea and the Nama assemblages and modern animals. Modified from [82,112].
[1] | KNOLL A H. Life on a young planet: the first three billion years of evolution on Earth[M]. Princeton/Oxford: Princeton University Press, 2003: 277. |
[2] |
NARBONNE G M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 421-442.
DOI URL |
[3] |
CUI H, XIAO S H, CAI Y P, et al. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan Section, South China[J]. Geological Magazine, 2019, 156(11): 1924-1948.
DOI URL |
[4] | 陈孟莪, 陈忆元, 钱逸. 峡东区震旦系—寒武系底部的管状动物化石[C]// 中国地质学会. 中国地质科学院天津地质矿产研究所文集(3). 1982: 119-126. |
[5] | 张录易, 董军社, 田淑华, 等. 高家山生物群[M]//丁莲芳, 张录易, 李勇, 等. 扬子地台北缘晚震旦世—早寒武世生物群研究. 北京: 科学技术文献出版社, 1992: 33-63. |
[6] | 陈哲, 孙卫国. 陕南晚震旦世后生动物管状化石Cloudina和Sinotubulites[J]. 微体古生物学报, 2001, 18(2): 180-202. |
[7] |
HUA H, CHEN Z, YUAN X L, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina[J]. Geology, 2005, 33(4): 277-280.
DOI URL |
[8] | 华洪, 陈哲, 蔡耀平, 等. 最早骨骼生物Cloudina: 埃迪卡拉纪晚期一类重要的标准化石[J]. 西北大学学报(自然科学版), 2009, 39(3): 522-527. |
[9] |
CAI Y P, HUA H, SCHIFFBAUER J D, et al. Tubegrowth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 1008-1018.
DOI URL |
[10] |
CAI Y P, CORTIJO I, SCHIFFBAUER J D, et al. Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China[J]. Precambrian Research, 2017, 298: 146-156.
DOI URL |
[11] |
HUA H, CHEN Z, YUAN X L. The advent of mineralized skeletons in Neoproterozoic Metazoa: new fossil evidence from the Gaojiashan fauna[J]. Geological Journal, 2007, 42(3/4): 263-279.
DOI URL |
[12] |
CAI Y P, SCHIFFBAUER J D, HUA H, et al. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China[J]. Precambrian Research, 2011, 191(1/2): 46-57.
DOI URL |
[13] | 陈哲, 孙卫国, 华洪. 陕南晚震旦世Gaojiashania的保存特征及形态解释[J]. 古生物学报, 2002, 41(3): 448-454. |
[14] |
CAI Y P, HUA H, ZHANG X L. Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte[J]. Precambrian Research, 2013, 224: 255-267.
DOI URL |
[15] | 华洪, 陈哲, 张录易. Shaanxilithes在贵州的发现及其意义[J]. 地层学杂志, 2004(3): 265-269, 291. |
[16] | 华洪, 陈哲, 袁训来, 等. 陕南伊迪卡拉纪末期的瓶状化石: 可能最早的有孔虫化石[J]. 中国科学: 地球科学, 2010, 40(9): 1105-1114. |
[17] | MIN X, HUA H, LIU L J, et al. Phosphatized Epiphyton from the terminal Neoproterozoic and its significance[J]. Precambrian Research, 2019, 331: 1-8. |
[18] | MIN X, HUA H, LIU L J, et al. A diverse calcified cyanobacteria assemblage in the latest Ediacaran[J]. Precambrian Research, 2020, 342: 1-10. |
[19] |
HUA H, PRATT B R, ZHANG L Y. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic[J]. Palaios, 2003, 18(4/5): 454-459.
DOI URL |
[20] |
CAI Y, HUA H, XIAO S, et al. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits[J]. Palaios, 2010, 25(8): 487-506.
DOI URL |
[21] | 华洪, 蔡耀平, 闵筱, 等. 埃迪卡拉纪末期管状动物的“大辐射”[J]. 西北大学学报(自然科学版), 2020, 50(2): 141-174. |
[22] | 蔡耀平, 华洪. 高家山生物群中的黄铁矿化作用[J]. 科学通报, 2006, 51(20): 2404-2409. |
[23] | 李朋. 高家山生物群沉积特征及碳同位素地球化学研究[D]. 西安: 西北大学, 2008. |
[24] | KREISA R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of Southwestern Virginia[J]. SEPM Journal of Sedimentary Research, 1981, 51(3): 823-848. |
[25] | AIGNER T. Calcareous tempestites: storm-dominated stratification in upper muschelkalk limestones (Middle Trias, SW-Germany)[M]// EINSELE G, SEILACHER A. Cyclic and Event Stratification. Berlin, Heidelberg: Springer, 1982: 180-198. |
[26] | AIGNER T. Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences[M]. New York: Springer-Verlag, 1985: 1-174 |
[27] | HU S X. Taphonomy and paleoecology of the Early Cambrian Chengjiang biota from Eastern Yunnan,China[J]. Berliner Paläobiologische Abhandlungen, 2005(7): 1-197. |
[28] | SEILACHER A. Distinctive features of sandy tempestites[M]//EINSELE G, SEILACHER A. Cyclic and event stratification. Berlin, Heidelberg: Springer, 1982: 333-349. |
[29] | GAGAN M, JOHNSON D, CARTER R M. The cyclone winifred storm bed, central Great Barrier Reef shelf,Australia[J]. Journal of Sedimentary Petrology, 1988, 58(5): 845-856. |
[30] | EINSELE G, SEILACHER A. Distinction of tempestites and turbidites[M]. Berlin: Springer-Verlag, 1991: 377-382. |
[31] | CHEEL R J, LECKIE D A. Hummocky Cross-Stratification[M]//WRIGHT P V. Sedimentology Review. Oxford, UK: Blackwell Publishing Ltd., 1992: 103-122. |
[32] |
MOHSENI H, AL-AASM I S. Tempestite deposits on a storm-influenced carbonate ramp: an example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran[J]. Journal of Petroleum Geology, 2004, 27(2): 163-178.
DOI URL |
[33] | JEFFERY D, AIGNER T. Storm sedimentation in the carboniferous limestones near weston-super-mare (Dinantian, SW England)[M]//EINSELE G, SEILACHER A. Cyclic and event stratification. Berlin, Heidelberg: Springer, 1982: 240-247. |
[34] |
GERMS G J B. New shelly fossils from Nama Group, South West Africa[J]. American Journal of Science, 1972, 272(8): 752-761.
DOI URL |
[35] |
GLAESSNER M F. Early Phanerozoic annelid worms and their geological and biological significance[J]. Journal of the Geological Society, 1976, 132(3): 259-275.
DOI URL |
[36] | GRANT S W. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic[J]. American Journal of Science, 1990, 290- A: 261-294. |
[37] | VINN O, ZATOŃ M. Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences[J]. Carnets De Géologie (Notebooks on Geology), 2012, 3: 39-47. |
[38] |
WARREN L V, FAIRCHILD T R, GAUCHER C, et al. Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay[J]. Terra Nova, 2011, 23(6): 382-389.
DOI URL |
[39] |
SEILACHER A. Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86-93.
DOI URL |
[40] | REITNER J. Cloudina-buildups Neoproterozoische Biodiversitäts Hotspots (Südliches Namibia)[M]//REITNER J, REICH M, SCHMIDT G. Geobiologie 2. Göttingen: Universitätsverlag Göttingen, 2004: 256-257. |
[41] | MILLER A J. A revised morphology of Cloudina with ecological and phylogenetic implications[D]. Cambridge, MA: Harvard University, 2005 |
[42] |
HAGADORN J W, WAGGONER B. Ediacaran fossils from the southwestern Great Basin, United States[J]. Journal of Paleontology, 2000, 74(2): 349-359.
DOI URL |
[43] | BOTTJER D J, ETTER W, HAGADORN J M, et al. Fossil-Lagerstätten: jewels of the fossil record[M]BOTTJER D J, ETTER W, HAGADORN J W, et al. Exceptional fossil preservation: a unique view on the evolution of marine life. New York: Columbia University Press, 2002: 1-142. |
[44] |
SEILACHER A, GRAZHDANKIN D, LEGOUTA A. Ediacaran biota: the dawn of animal life in the shadow of giant protists[J]. Paleontological Research, 2003, 7(1): 43-54.
DOI URL |
[45] |
SMITH E F, NELSON L L, STRANGE M A, et al. The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA[J]. Geology, 2016, 44(11): 911-914.
DOI URL |
[46] |
GROTZINGER J P, BOWRING S A, SAYLOR B Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution[J]. Science, 1995, 270: 598-604.
DOI URL |
[47] |
CUI H, KAUFMAN A J, XIAO S, et al. Environmental context for the terminal Ediacaran biomineralization of animals[J]. Geobiology, 2016, 14(4): 344-363.
DOI URL |
[48] |
CAI Y P, XIAO S H, HUA H, et al. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China[J]. Precambrian Research, 2015, 261: 12-24.
DOI URL |
[49] |
CHEN Z, BENGTSON S, ZHOU C M, et al. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China[J]. Lethaia, 2008, 41(1): 37-45.
DOI URL |
[50] | 赵自强, 邢裕盛, 马国干, 等. 长江三峡地区生物地层学(1): 震旦纪分册[M]. 北京: 地质出版社, 1985: 1-143. |
[51] | 孙勃, 华洪, 蔡耀平. 陕西宁强埃迪卡拉系顶部管状化石Sinotubulites形态学与古生态学新知[J]. 古生物学报, 2012, 51(1): 107-113. |
[52] |
PACHECO M L A F, GALANTE D, RODRIGUES F, et al. Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella[J]. PLoS One, 2015, 10(3): e0114219.
DOI URL |
[53] | HAHN G, HAHN R, LEONARDOS O H, et al, Kϵorperlich erhaltene Scyphozoen-Reste aus dem Jungprϵakambrium Brasiliens[J]. Geologica et Palaeontologica, 1982, 16: 1-18. |
[54] |
BABCOCK L E, GRUNOW A M, SADOWSKI G R, et al. Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 7-18.
DOI URL |
[55] | PACHECO M L A F, LEME J M, FAIRCHILD T R. Reevaluation of the morphology and systematic affinities of Corumbella werneri Hahn et al. 1982, Tamengo Formation (Ediacaran), Corumba, Brazil[M]. 10th Congreso Argentino de Paleontologia y Bioestratigrafia, Ⅶ. Congreso Latinoamericano de Paleontologia. La Plata, Argentina, Libro de Resumes, 2010: 193. |
[56] | PACHECO M, LEME J, MACHADO A F. Taphonomic analysis and geometric modeling for the reconstitution of the Ediacaran metazoan Corumbella werneri (Hahn et al., 1982), (Tamengo Formation, Corumba Basin, Brasil)[J]. Journal of Taphonomy, 2011(9): 269-283. |
[57] |
WALDE DETLEFH G, WEBER B, ERDTMANN B D, et al. Taphonomy of Corumbella werneri from the Ediacaran of Brazil: Sinotubulitid tube or conulariid test?[J]. Alcheringa: An Australasian Journal of Palaeontology, 2019, 43(3): 335-350.
DOI URL |
[58] |
SEILACHER A, OLIVERO E B, BUTTS S H, et al. Soft-bottom tube worms: from irregular to programmed shell growth[J]. Lethaia, 2008, 41(4): 349-365.
DOI URL |
[59] |
MEYER M, SCHIFFBAUER J D, XIAO S, et al. Taphonomy of the Upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes[J]. Palaios, 2012, 27(5): 354-372.
DOI URL |
[60] | 王欣. 晚埃迪卡拉世管状化石陕西迹的形态学、生物地层学及埋藏学研究[D]. 西安: 西北大学, 2019. |
[61] | 张志亮, 华洪, 张志飞. 埃迪卡拉纪疑难化石Shaanxilithes在云南王家湾剖面的发现及地层意义[J]. 古生物学报, 2015, 54(1): 12-28. |
[62] |
DROSER M L, GEHLING J G. Synchronous aggregate growth in an abundant new Ediacaran tubular organism[J]. Science, 2008, 319(5870): 1660-1662.
DOI URL |
[63] | 张录易. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究[G]// 中国地质学会. 中国地质科学院西安地质矿产研究所文集(13). 1986: 70- 91, 102-105. |
[64] | 张录易, 李勇. 陕西宁强震旦纪末期的瓶状微化石[G]//中国地质学会. 中国地质科学院西安地质矿产研究所文集(31). 1991: 80-89. |
[65] | 张录易. 陕南震旦系灯影组瓶状微化石研究新进展[J]. 甘肃地质学报, 1994(2): 1-8. |
[66] | 薛耀松, 周传明, 唐天福. 扬子区晚震旦世动物化石新材料[J]. 古生物学报, 2002, 41(1): 137-142. |
[67] | 闵筱. 高家山生物群疑难化石研究[D]. 西安: 西北大学, 2019. |
[68] | RIDING R. Calcified cyanobacteria[M]//PENTECOST A. Calcareous Algae and Stromatolites. Berlin, Heidelberg: Springer, 1991: 55-87. |
[69] |
WOO J, CHOUGH S K, HAN Z. Chambers of Epiphyton Thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China[J]. Palaios, 2008, 23(1): 55-64.
DOI URL |
[70] |
SǍSǍRAN E, BUCUR I I, PLE G, et al. Late Jurassic Epiphyton-like cyanobacteria: indicators of long-term episodic variation in marine bioinduced microbial calcification?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 401(5): 122-131.
DOI URL |
[71] |
LIU L J, WU Y S, YANG H J, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: systematics and significance[J]. Journal of Systematic Palaeontology, 2016, 14(3): 183-210.
DOI URL |
[72] |
RIDING R, VORONOVA L. Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia[J]. Geological Magazine, 1984, 121(3): 205-210.
DOI URL |
[73] | KORDE K B. Cambrian algae of the southeastern Siberian platform[J]. USSR Academy of Sciences, Transactions of the Institute of Palaeontology, 1961, 89: 147. |
[74] | AHR W M. Paleoenvironment,algal structures, and fossil algae in the Upper Cambrian of Central Texas[J]. SEPM Journal of Sedimentary Research, 1971, 41(1): 205-216. |
[75] | PRATT B R. Epiphyton and Renalcis: diagenetic microfossils from calcification of coccoid blue-green algae[J]. SEPM Journal of Sedimentary Research, 1984, 54: 948-971. |
[76] | RIDING R. Calcified algae and bacteria[M]//ZHURAVLEV A, RIDING R. The ecology of the Cambrian Radiation. New York, Chichester, West Sussex: Columbia University Press, 2000: 445-473. |
[77] |
GANDIN A, DEBRENNE F. Distribution of the archaeocyath-calcimicrobial bioconstructions on the Early Cambrian shelves[J]. Palaeoworld, 2010, 19(3/4): 222-241.
DOI URL |
[78] |
LUCHININA V A. Cambrian algoflora: association of various microorganism groups[J]. Paleontological Journal, 2013, 47(9): 989-996.
DOI URL |
[79] |
LUCHININA V A, TERLEEV A A. Features of calcareous algae mineralization at the transition to the Phanerozoic biosphere[J]. Paleontological Journal, 2014, 48(14): 1450-1456.
DOI URL |
[80] | PEEL J S. An epiphytacean-Girvanella (Cyanobacteria) symbiosis from the Cambrian (Series 3, Drumian) of North Greenland (Laurentia)[J]. Bulletin of Geosciences, 2018, 93(3): 327-336. |
[81] |
LIU P J, XIAO S H, YIN C Y, et al. Silicified tubular microfossils from the upper Doushantuo Formation (Ediacaran) in the Yangtze Gorges area, South China[J]. Journal of Paleontology, 2009, 83(4): 630-633.
DOI URL |
[82] | 钱逸, 李国祥, 蒋志文, 等. 我国寒武系底部几种磷酸盐化保存的蓝菌类化石[J]. 微体古生物学报, 2007, 24(2): 222-228. |
[83] | 罗惠麟, 蒋志文, 徐重九, 等. 云南晋宁梅树村、王家湾震旦系-寒武系界线研究[J]. 地质学报, 1980, 54(2): 95-111. |
[84] | 刘云焕, 李勇, 邵铁全, 等. 陕南寒武系底部磷酸盐化保存的寒武松藻属化石新知[J]. 微体古生物学报, 2014, 31(1): 98-103. |
[85] | 杨晓光. 寒武纪早期宽川铺生物群中微生物化石与相关显微结构[D]. 西安: 西北大学, 2018. |
[86] |
PEEL J S. Spirellus and related helically coiled microfossils (cyanobacteria) from the lower Cambrian of north Greenland[J]. Rapport Grønlands Geologiske Undersøgelse, 1988, 137: 5-32.
DOI URL |
[87] |
MANKIEWICZ C. Obruchevella and other microfossils in the Burgess shale: preservation and affinity[J]. Journal of Paleontology, 1992, 66(5): 717-729.
DOI URL |
[88] | BURZIN M B. Late Vendian helicoid filamentous microfossils[J]. Palaeontological Journal, 1995, 29(1A): 1-34. |
[89] |
XIAO S H, LAFLAMME M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota[J]. Trends in Ecology and Evolution, 2009, 24(1): 31-40.
DOI URL |
[90] | GEHLING J G, DROSER M L, JENSEN S R, et al. Evolving form and function: fossils and development[M]. Yale Peabody Museum, 2005: 43-66. |
[91] |
EVANS S D, GEHLING J G, DROSER M L. Slime travelers: early evidence of animal mobility and feeding in an organic mat world[J]. Geobiology, 2019, 17(5): 490-509.
DOI URL |
[92] |
GEHLING J G, RUNNEGAR B N, DROSER M L. Scratch traces of large Ediacara bilaterian animals[J]. Journal of Paleontology, 2014, 88(2): 284-298.
DOI URL |
[93] |
IVANTSOV A Y. Trace fossils of precambrian metazoans “Vendobionta” and “Mollusks”[J]. Stratigraphy and Geological Correlation, 2013, 21(3): 252-264.
DOI URL |
[94] |
IVANTSOV A Y. Feeding traces of Proarticulata: the Vendian Metazoa[J]. Paleontological Journal, 2011, 45(3): 237-248.
DOI URL |
[95] |
CHEN Z, ZHOU C M, YUAN X L, et al. Death march of a segmented and trilobate bilaterian elucidates early animal evolution[J]. Nature, 2019, 573: 412-415.
DOI URL |
[96] |
CLAPHAM M E, NARBONNE G M. Ediacaran epifaunal tiering[J]. Geology, 2002, 30(7): 627-630.
DOI URL |
[97] |
CLAPHAM M E, NARBONNE G M, GEHLING J G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland[J]. Paleobiology, 2003, 29(4): 527-544.
DOI URL |
[98] |
DROSER M L, GEHLING J G, JENSEN S R. Assemblage palaeoecology of the Ediacara biota: the unabridged edition?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 131-147.
DOI URL |
[99] |
GRAZHDANKIN D, SEILACHER A. Underground Vendobionta from Namibia[J]. Palaeontology, 2002, 45(1): 57-78.
DOI URL |
[100] |
DZIK J. Organic membranous skeleton of the Precambrian metazoans from Namibia[J]. Geology, 1999, 27(6): 519-522.
DOI URL |
[101] | JENSEN S, DROSER M L, GEHLING J G. A critical look at the ediacaran trace fossil record[M]//XIAO S, KAUFMAN A J. Topics in geobiology. Dordrecht: Springer, 2006: 115-157. |
[102] |
CHEN Z, ZHOU C M, MEYER M, et al. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors[J]. Precambrian Research, 2013, 224: 690-701.
DOI URL |
[103] | CHEN Z, CHEN X, ZHOU C M, et al. Late Ediacarantrackways produced by bilaterian animals with paired appendages[J]. Science Advances, 2018, 4(6): eaao6691. |
[104] |
XIAO S H, CHEN Z, ZHOU C M, et al. Surfing in and on microbial mats: oxygen-related behavior of a terminal Ediacaran bilaterian animal[J]. Geology, 2019, 47(11): 1054-1058.
DOI URL |
[105] |
GEHLING J G, NARBONNE G M. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland[J]. Canadian Journal of Earth Sciences, 2007, 44(3): 367-387.
DOI URL |
[106] |
LAFLAMME M, NARBONNE G M. Ediacaran fronds[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258(3): 162-179.
DOI URL |
[107] |
LAFLAMME M, NARBONNE G M, GREENTREE C, et al. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland[J]. Geological Society, London, Special Publications, 2007, 286(1): 237-257.
DOI URL |
[108] | SEILACHER A. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?[M]// HOLLAND H D, TRENDALL A F. Patterns of Change in Earth Evolution. Berlin, Heidelberg: Springer, 1984: 159-168. |
[109] |
SEILACHER A. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution[J]. Journal of the Geological Society, 1992, 149(4): 607-613.
DOI URL |
[110] |
SEILACHER A. Vendozoa:organismic construction in the Proterozoic biosphere[J]. Lethaia, 1989, 22(3): 229-239.
DOI URL |
[111] |
MCMENAMIN M A S. The garden of Ediacara[J]. Palaios, 1986, 1(2): 178-182.
DOI URL |
[112] | MCMENAMIN M A S, MCMENAMIN D L S. The emergence of animals: the Cambrian breakthrough[M]. New York: Columbia University Press, 1990: 217. |
[113] |
STEINER M, REITNER J. Evidence of organic structures in Ediacara-type fossils and associated microbial mats[J]. Geology, 2001, 29(12): 1119-1122.
DOI URL |
[114] |
GEHLING J G. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks[J]. Palaios, 1999, 14(1): 40-57.
DOI URL |
[115] | GEHLING J G, DROSER M L, JENSEN S R, et al. Ediacara organisms: relating form to function[J]. Evolving Form and Function: Fossils and Development,(Gehling 1999), 2005: 43-66. |
[116] |
SPERLING E A, PISANI D, PETERSON K J. Poriferan paraphyly and its implications for Precambrian palaeobiology[J]. Geological Society, London, Special Publications, 2007, 286(1): 355-368.
DOI URL |
[117] | HOFFMAN A, VERMEIJ G J. Evolution and escalation: an ecological history of life[M]. Princeton, New Jersey: Princeton University Press, 1987: 1-527. |
[118] |
BUSH A M, BAMBACH R K, DALEY G M. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic[J]. Paleobiology, 2007, 33(1): 76-97.
DOI URL |
[119] |
BAMBACH R K, BUSH A M, ERWIN D H. Autecology and the filling of ecospace: key metazoan radiations[J]. Palaeontology, 2007, 50(1): 1-22.
DOI URL |
[1] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[2] | 凌媛, 王永, 王淑贤, 孙青, 李海兵. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342. |
[3] | 张志亮, 陈飞扬, 张志飞. 华南寒武纪碳酸盐岩中最早腕足动物的辐射、发育与分布[J]. 地学前缘, 2020, 27(6): 79-103. |
[4] | 韩健, 郭俊锋, 欧强, 宋祖晨, 刘平, 郝文静, 孙洁, 王星. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78. |
[5] | 欧强. 寒武纪叶足动物:困惑与思考[J]. 地学前缘, 2020, 27(6): 47-66. |
[6] | 卢立伍, 谭锴, 王曦. 中华原始软骨硬鳞鱼之再描述及其地质时代[J]. 地学前缘, 2020, 27(6): 371-381. |
[7] | 姬书安, 张笠夫. 内蒙古鄂尔多斯地区早白垩世新的翼龙类化石[J]. 地学前缘, 2020, 27(6): 365-370. |
[8] | 汪筱林, 李阳, 裘锐, 蒋顺兴, 张鑫俊, 陈鹤, 王俊霞, 程心. 中国早白垩世翼龙动物群及其多样性对比[J]. 地学前缘, 2020, 27(6): 347-364. |
[9] | 郭宪璞, 王士涛, 盖志琨, 赵子然, 丁孝忠, 李天福. 新疆晚奥陶世鱼形动物[J]. 地学前缘, 2020, 27(6): 341-346. |
[10] | 王建华, 赵文金, 朱敏, 李强, 蔡家琛, 张娜, 彭礼健, 罗彦超. 云南曲靖刘家冲剖面关底组中的鱼类微体化石及其地层学意义[J]. 地学前缘, 2020, 27(6): 329-340. |
[11] | 黄明立, 田坤烜, 史宇坤. 滇黔桂盆地早二叠世亚丁斯克期的沉积环境分异与䗴有孔虫响应[J]. 地学前缘, 2020, 27(6): 313-328. |
[12] | 董智, 石学法, 邹欣庆, 邹建军, 杨宝菊, 刘季花, 程振波. 冲绳海槽表层沉积物放射虫属种空间分布特征及其影响因素[J]. 地学前缘, 2020, 27(6): 300-312. |
[13] | 罗海, 李杰, 邹亚菲, 徐会明. 硅藻生物多样性对千年尺度气候突变的快速响应:以云南云龙天池湖泊末次冰消期记录为例[J]. 地学前缘, 2020, 27(6): 289-299. |
[14] | 袁洁琼, 丁旋, 邹欣庆. 南黄海辐射沙脊群表层沉积物中底栖有孔虫埋葬群分布特征及其环境意义[J]. 地学前缘, 2020, 27(6): 276-288. |
[15] | 苏新, 曲莹, 陈芳, 杨胜雄, 周洋, 崔鸿鹏, 于翀涵, 滕田田. 台西南深海底栖有孔虫及其5万年来冷泉微生境变迁记录[J]. 地学前缘, 2020, 27(6): 255-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||