地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 289-299.DOI: 10.13745/j.esf.sf.2020.6.22
收稿日期:
2020-03-19
修回日期:
2020-05-28
出版日期:
2020-11-02
发布日期:
2020-11-02
通信作者:
李杰
作者简介:
罗 海(1994—),男,硕士研究生,地质工程专业生态环境与城市地质方向。E-mail: luohai0417@qq.com
基金资助:
LUO Hai1(), LI Jie1,*(
), ZOU Yafei2, XU Huiming3
Received:
2020-03-19
Revised:
2020-05-28
Online:
2020-11-02
Published:
2020-11-02
Contact:
LI Jie
摘要:
湖泊是全球生态系统的重要组成部分。尽管湖泊初级生产力的生物多样性在湖泊生态系统中发挥着非常重要的作用,但对其如何在千年时间尺度上对气候变化做出响应却知之甚少,而千年时间尺度与预测未来变化最为相关。本文以云南云龙天池湖泊为研究对象,以湖泊重要的初级生产力硅藻为研究手段,分析了末次冰消期期间硅藻生物多样性对千年尺度上气候变化的响应。云龙天池硅藻生物多样性表现为暖期高、冷期低。随着全球温度的快速变化,硅藻生物多样性亦对应的快速响应:在转暖时(Bolling/Allerod暖期)快速增加,在转冷时(Herinrich 1和Younger Dryas)快速降低。这些变化主要与温度变化驱动的湖泊环境条件的变化(比如冰封期长短、边岸带水生植被的变化等)有关。研究结果还表明,在末次冰消期期间,云龙天池湖泊硅藻生物多样性与千年尺度的气候变化同步,而且在长时间尺度上,气候变暖对高山湖泊生物多样性可能是有利的。
中图分类号:
罗海, 李杰, 邹亚菲, 徐会明. 硅藻生物多样性对千年尺度气候突变的快速响应:以云南云龙天池湖泊末次冰消期记录为例[J]. 地学前缘, 2020, 27(6): 289-299.
LUO Hai, LI Jie, ZOU Yafei, XU Huiming. Rapid response of diatom biodiversity to millennial-scale abrupt change of climate: a case study of the last glacial record of the Yunlong Lake, Yunnan Province[J]. Earth Science Frontiers, 2020, 27(6): 289-299.
图1 云南云龙天池的地理位置示意图(a)和形态图(b) 红星为YL-AB钻孔位置。a来源: https://maps.ngdc.noaa.gov/viewers/wcs-client/;b来源:Google Earth。
Fig.1 Sketch map of geographic location (a) and topography (b) of the Yunlong Lake in Yunnan Province
图2 云龙天池沉积复合岩心YL-AB年龄-深度模型(据文献[39]修改) 浅蓝色标记为校准后的14C年龄,灰色阴影为最可能的年龄区间,黑色虚线为95%的置信区间,红色虚线为加权平均年龄。
Fig.2 YL-AB age-depth model for the sedimentary composite core from the Yunlong Lake. Modified after[39].
图5 硅藻生物多样性对温度变化的响应(北极温度重建记录来自文献[35];格陵兰冰芯氧同位素记录来自文献[54])
Fig.5 Response of diatom biodiversity to temperature change. Arctic temperature reconstruction records from[35]; Oxygen isotope records of the Greenland ice core from[54].
[1] |
WORM B, BARBIER E B, BEAUMONT N, et al. Impacts of biodiversity loss on ocean ecosystem services[J]. Science, 2006, 314(5800): 787-790.
DOI URL |
[2] |
ISBELL F, DAVID T, STEPHEN P. The biodiversity-dependent ecosystem service debt[J]. Ecology Letters, 2015, 18(2): 119-134.
DOI URL |
[3] | CASPER J K. 变化中的生态系统: 全球变暖的影响[M]. 赵斌, 郭海强,译. 北京: 高等教育出版社, 2012. |
[4] |
ROOT T L, PRICE J, HALL K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918): 57-60.
DOI URL |
[5] |
THOMAS C D, CAMERON A, GREEN R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970): 145-148.
DOI URL |
[6] |
JONES G P, MCCORMICK M I, SRINIVASAN M, et al. Coral decline threatens fish biodiversity in marine reserves[J]. Proceedings of the National Academy of Sciences, 2004, 101(21): 8251-8253.
DOI URL |
[7] | MENÉNDEZ R, MEGÍAS A G, HILL J, et al. Species richness changes lag behind climate change[J]. Proceedings of the Royal Society B, 2006, 273(1593): 1465-1470. |
[8] |
WILLIAMSON C E, SAROS J E, VINCENT W F. Lakes and reservoirs as sentinels integrators and regulators of climate change[J]. Limnology and Oceanography, 2009, 54(6): 2273-2282.
DOI URL |
[9] |
HAYFORD B L, CAIRES A M, CHANDRA S, et al. Patterns in benthic biodiversity link lake trophic status to structure and potential function of three large, deep lakes[J]. PLoS One, 2015, 10(1): e0117024.
DOI URL |
[10] |
XU F, TAO S, DAWSON R W, et al. Lake ecosystem health assessment: indicators and methods[J]. Water Research, 2001, 35(13): 3157-3167.
DOI URL |
[11] |
MANN D G. The species concept in diatoms[J]. Phycologia, 1999, 38(6): 437-495.
DOI URL |
[12] |
陈小林, 陈光杰, 卢慧斌, 等. 抚仙湖和滇池硅藻生物多样性与生产力关系的时间格局[J]. 生物多样性, 2015, 23(1): 89-100.
DOI |
[13] | SMOL J P. Paleoclimate proxy data from freshwater arctic diatoms[J]. Proceedings of the International Society of Limnology, 1922-2010, 1988, 23(2): 837-844. |
[14] |
SMOL J P, CUMMING B F. Tracking long-term changes in climate using algal indicators in lake sediments[J]. Journal of Phycology, 2000, 36(6): 986-1011.
DOI URL |
[15] | WANG L, LU H, LIU J, et al. Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17500 and 6000 calendaryears B.P.[J]. Journal of Geophysical Research, 2008, 113(D21): 1-9. |
[16] |
WANG L, RIOUAL P, PANIZZO V N, et al. A 1000-yr record of environmental change in NE China indicated by diatom assemblages from Maar Lake Erlongwan[J]. Quaternary Research, 2012, 78(1): 24-34.
DOI URL |
[17] | 邹亚菲, 严瑶, 张佼杨, 等. 云龙天池湖泊水深与硅藻生物多样性的关系[J]. 第四纪研究, 2015, 35(4): 988-996. |
[18] | ZOU Y F, WANG L, XU H M, et al. Do changes in water depth and water level influence the diatom diversity of Yunlong Lake, in Yunnan Province, Southwest China?[J]. Journal of Paleolimnology, 2020,64:273-291. https://doi.org/10.1007/s10933-020-00137-x. |
[19] |
SMOL J P, WOLFE A P, BIRKS H J B, et al. Climate-driven regime shifts in the biological communities of arctic lakes[J]. Proceedings of the National Academy of Sciences, 2005, 102(12): 4397-4402.
DOI URL |
[20] |
RÜHLAND K M, PATERSON A M, SMOL J P. Lake diatom responses to warming: reviewing the evidence[J]. Journal of Paleolimnology, 2015, 54(1): 1-35.
DOI URL |
[21] | WINDER M, REUTER J E, SCHLADOW S G. Lake warming favours small-sized planktonic diatom species[J]. Proceedings of the Royal Society B, 2009, 276(1656): 427-435. |
[22] |
YAN Y, WANG L, LI J, et al. Diatom response to climatic warming over the last 200 years: a record from Gonghai Lake, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 48-59.
DOI URL |
[23] |
ZOU Y F, WANG L, ZHANG L Z, et al. Seasonal diatom variability of Yunlong Lake, southwest China: a case study based on sediment trap records[J]. Diatom Research, 2018, 33(3): 381-396.
DOI URL |
[24] | LI J J, WANG L, CAO Q, et al. Diatom response to global warming in Lake Douhu, Southeast China[J]. Acta Geologica Sinica, 2019. https://doi.org/10.1111/1755-6724.14294. |
[25] |
GERTEN D, ADRIAN R. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in Northern Hemispheric lakes[J]. The Scientific World Journal, 2002, 2: 586-606.
DOI URL |
[26] |
REYNOLDS C S, HUSZAR V, KRUK C, et al. Towards a functional classification of the freshwater phytoplankton[J]. Journal of Plankton Research, 2002, 24(5): 417-428.
DOI URL |
[27] | 羊向东, 王苏民, KAMENIK C, 等. 藏南沉错钻孔硅藻组合与湖水古盐度定量恢复[J]. 中国科学: D辑, 2003, 33(2): 163-169. |
[28] |
SMOL J P, DOUGLAS M S V. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments[J]. Frontiers in Ecology and the Environment, 2007, 5(9): 466-474.
DOI URL |
[29] |
DONG X H, BENNION H, BATTARBEE R, et al. Tracking eutrophication in Taihu Lake using the diatom record: potential and problems[J]. Journal of Paleolimnology, 2008, 40(1): 413-429.
DOI URL |
[30] |
WINDER M, SOMMER U. Phytoplankton response to a changing climate[J]. Hydrobiologia, 2012, 698(1): 5-16.
DOI URL |
[31] |
GREGORY-EAVES I, BEISNER B E. Palaeolimnological insights for biodiversity science: an emerging field[J]. Freshwater Biology, 2011, 56(12): 2653-2661.
DOI URL |
[32] |
PANIZZO V N, MACKAY A W, ROSE N L, et al. Recent palaeolimnological change recorded in Lake Xiaolongwan, northeast China: climatic versus anthropogenic forcing[J]. Quaternary International, 2013, 290/291(2): 322-334.
DOI URL |
[33] |
WLODARSKA-KOWALCZUK M, WESLAWSKI J M. Impact of climate warming on arctic benthic biodiversity: a case study of two arctic glacial bays[J]. Climate Research, 2001, 18(12): 127-132.
DOI URL |
[34] |
CLARK P U, SHAKUN J D, BAKER P A, et al. Global climate evolution during the Last Deglaciation[J]. Proceedings of the National Academy of Sciences, 2012, 109(19): E1134-E1142.
DOI URL |
[35] |
BUIZERT C, GKINIS V, SEVERINGHAUS J P, et al. Greenland temperature response to climate forcing during the last deglaciation[J]. Science, 2014, 345(6201): 1177-1180.
DOI URL |
[36] |
MA Z B, CHENG H, TAN M, et al. Timing and structure of the Younger Dryas event in northern China[J]. Quaternary Science Reviews, 2012, 41: 83-93.
DOI URL |
[37] | 苏骅, 王平. 云龙天池自然保护区垂直气候带划分[J]. 云南地理环境研究, 2013, 25(2): 90-94. |
[38] | 甘淑, 何大明. 纵向岭谷区地势曲线图谱及地貌特征分析[J]. 云南大学学报(自然科学版), 2004, 26(6): 534-540. |
[39] | WANG L, JIANG W Y, JIANG D B, et al. Prolonged heavy snowfall during the Younger Dryas[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(24): 13748-13762. |
[40] | BATTARBEE R W, JONES V J, FLOWER B P, et al. Diatoms[M]//SMOL J P, BIRKS H J B, LAST W M. Tracking environmental change using lake sediments. Amsterdam: Kluwer Academic Publishers, 2001: 155-201. |
[41] |
BATTARBEE R W, KNEEN M J. The use of electronically counted microspheres in absolute diatom analysis[J]. Limnology and Oceanography, 1982, 27(1): 184-188.
DOI URL |
[42] | KRAMMER K, LANGE-BERTALOT H. Bacillariophyceae. Süsswasserflora von Mitteleuropa, Band 2[M]. Berlin: Verlag, 1991. |
[43] | GUIRY M D, GUIRY G M. Algae Base[EB/OL]. [2020-07-04]. http://www.algaebase.org. |
[44] | INGRAM J. Berger-Parker index[M]//JORGENSEN S E, FATH B D. Encyclopedia of ecology. Oxford: Elsevier Press, 2008: 332-334. |
[45] |
PIELOU E C. Species-diversity and pattern-diversity in the study of ecological succession[J]. Journal of Theoretical Biology, 1966, 10(2): 370-383.
DOI URL |
[46] |
SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688.
DOI URL |
[47] |
PEET R. Themeasurement of speciesdiversity[J]. Annual Review of Ecology and Systematics, 1974, 5(1): 285-307.
DOI URL |
[48] | HARPER D A. Numerical palaeobiology: computer-based modelling and analysis of fossils and their distributions[M]. Hoboken: John Wiley & Sons Press, 1999. |
[49] | HAMMER Ø, HARPER D, RYAN P. Past-palaeontological statistics[M]. Oslo: University of Oslo Press, 2009: 1-31. |
[50] |
YUAN D X, CHENG H, EDWARDS R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
DOI URL |
[51] | KREBS C J. Ecological methodology[M]. New York: Harper & Row Press, 1989. |
[52] |
LOTTER A F, BIGLER C. Do diatoms in the Swiss Alps reflect the length of ice-cover?[J]. Aquatic Sciences, 2000, 62(2): 125-141.
DOI URL |
[53] | DOUGLAS M S V, SMOL J P. Freshwater diatoms as indicators of environmental change in the High Artic[M]//STOERMER E F, SMOL J P. The diatoms: application for the environmental and earth sciences. Cambridge: Cambridge University Press, 1999: 227-244. |
[54] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431: 147-151.
DOI URL |
[1] | 孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354. |
[2] | 张晓, 张旭. 第四纪两类千年尺度气候振荡现象及机理研究[J]. 地学前缘, 2022, 29(5): 322-333. |
[3] | 张兰兰, 邱卓雅, 向荣, 杨艺萍, 陈木宏. 基于生物硅记录的孟加拉湾东南部末次冰期以来的古生产力变化[J]. 地学前缘, 2022, 29(4): 136-143. |
[4] | 罗明, 张世文, 魏洪斌, 周鹏飞, 周妍, 陈妍, 李灼超, 张金桃. 基于IUCN《矿山生物多样性管理系列指南》的大宝山矿生态修复实践研究[J]. 地学前缘, 2021, 28(4): 90-99. |
[5] | 刘云慧, 宇振荣, 罗明. 国土整治生态修复中的农业景观生物多样性保护策略[J]. 地学前缘, 2021, 28(4): 48-54. |
[6] | 汪筱林, 李阳, 裘锐, 蒋顺兴, 张鑫俊, 陈鹤, 王俊霞, 程心. 中国早白垩世翼龙动物群及其多样性对比[J]. 地学前缘, 2020, 27(6): 347-364. |
[7] | 李顺, 吴聪, 陈炽新, 荆夏, 李学杰, 蔡观强, 钟和贤, 张江勇, 李波, 张金鹏. 南海中北部表层沉积硅藻的高分辨空间分布及其与现代环境因子的关系[J]. 地学前缘, 2020, 27(6): 241-254. |
[8] | 苏新, 陈芳, 于翀涵, 郭策. 加利福尼亚洋流北区早更新世以来似太平洋年代际振荡的微体化石记录[J]. 地学前缘, 2020, 27(6): 128-143. |
[9] | 郑水林, 孙志明, 胡志波, 张广心. 中国硅藻土资源及加工利用现状与发展趋势[J]. 地学前缘, 2014, 21(5): 274-280. |
[10] | 方晶 武亚芳 李瑞武 周江 康玲玲 柴锐 马楠. 辽宁沿海早、中期全新世海进中的一次海退事件探讨[J]. 地学前缘, 2009, 16(2): 396-403. |
[11] | 赵兴青 杨柳燕 尹大强 王汝成 陆现彩 陆建军. 太湖沉积物中微生物多样性垂向分布特征[J]. 地学前缘, 2008, 15(6): 177-184. |
[12] | Kazue Tazaki Issei Morii. Sinohyliopsis schlegeli珍珠层中Si、Mn、Fe和Sr离子的微生物固定化和环境因素[J]. 地学前缘, 2008, 15(6): 54-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||