地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 300-312.DOI: 10.13745/j.esf.sf.2020.6.9
董智1,2(), 石学法2,3,*(
), 邹欣庆1,3,**(
), 邹建军2,3, 杨宝菊2,3, 刘季花2,3, 程振波2
收稿日期:
2020-03-24
修回日期:
2020-05-07
出版日期:
2020-11-02
发布日期:
2020-11-02
通信作者:
石学法,邹欣庆
作者简介:
董 智(1991—),男,博士研究生,海洋地质专业。E-mail: zhidong@fio.org.cn
基金资助:
DONG Zhi1,2(), SHI Xuefa2,3,*(
), ZOU Xinqing1,3,**(
), ZOU Jianjun2,3, YANG Baoju2,3, LIU Jihua2,3, CHENG Zhenbo2
Received:
2020-03-24
Revised:
2020-05-07
Online:
2020-11-02
Published:
2020-11-02
Contact:
SHI Xuefa,ZOU Xinqing
摘要:
为探究冲绳海槽放射虫属种的空间分布特征及其海洋学意义,对采自冲绳海槽北部、中部和南部3个海域的34个表层沉积物中的放射虫群落组成特征进行了系统研究。总体看来,冲绳海槽表层沉积物放射虫丰度较高,群落组成以热带-亚热带暖水放射虫属种为主,其中优势种为Tetrapyle octacantha group、Spongodiscus resurgens和Euchitonia furcata。结果表明冲绳海槽放射虫属种存在明显的区域差异性,除T.octacantha group以外,其余暖水指示种含量总体上均呈现南高北低的变化趋势。冲绳海槽北部陆架-陆坡区受长江冲淡水的影响,温度和盐度变化较为剧烈,因此可能不利于大多数放射虫暖水指示种的发育,但T.octacantha group却因自身适宜生存的温度范围较大,进而得以在冲绳海槽北部陆坡区呈现出高值。较高的中层水温度可能是抑制亚北极中层水指示种Cycladophora davisiana在冲绳海槽分布的主要因素,而冲绳海槽的高海槛则限制了太平洋深层水种Carpocanistrum papillosum和Cornutella profunda的入侵。冲绳海槽放射虫的空间分布对区域海洋环境特征有着很好的响应,因此可以为古环境重建研究提供重要依据。
中图分类号:
董智, 石学法, 邹欣庆, 邹建军, 杨宝菊, 刘季花, 程振波. 冲绳海槽表层沉积物放射虫属种空间分布特征及其影响因素[J]. 地学前缘, 2020, 27(6): 300-312.
DONG Zhi, SHI Xuefa, ZOU Xinqing, ZOU Jianjun, YANG Baoju, LIU Jihua, CHENG Zhenbo. Spatial distribution characteristics of radiolarian species in surface sediments from the Okinawa Trough and the impact of environmental factors[J]. Earth Science Frontiers, 2020, 27(6): 300-312.
图1 冲绳海槽区域位置及表层沉积物站位分布图(水深数据来自 https://www.ncdc.noaa.gov/,流系据文献[4]和[5]绘制) (a)冲绳海槽地理位置、表层流场及东海东北部[2]与九州帕劳海脊KS15-4[3]浮游拖网站位;(b)表层沉积物样品的站位分布。
Fig.1 Map of the study region and the sample locations in the Okinawa Trough (The water depth data are available online (https://www.ncdc.noaa.gov/). The current system is modified after [4] and [5].)
图2 西太平洋温盐空间及垂向分布特征 (a)夏季表层海水(10 m水深)温度及盐度分布;(b)冬季表层海水(10 m水深)温度及盐度分布,温盐数据取自World OceanAtlas 2013(WOA13),黑点为本文所用表层沉积物样品站位;(c)冲绳海槽南部(蓝色)、中部(绿色)和北部(红色)CTD实测温盐剖面图,CTD数据来源于 https://jdoss1.jodc.go.jp/vpage/scalar.html。
Fig.2 Map showing the spatial and vertical distribution conditions of temperature and salinity in the western Pacific
区域 | 表层样站位 | 北纬/(°) | 东经/(°) | 水深/m | 采样方式 |
---|---|---|---|---|---|
冲绳海槽北部 | HOBAB1-S2 | 128.74 | 29.96 | 938 | 箱式取样器 |
HOBAB1-S3B | 128.44 | 30.24 | 874 | 箱式取样器 | |
HOBAB1-S12 | 127.88 | 29.61 | 847 | 箱式取样器 | |
HOBAB1-S13 | 127.74 | 29.75 | 490 | 箱式取样器 | |
HOBAB1-S17 | 127.69 | 29.35 | 994 | 箱式取样器 | |
HOBAB1-S15-2 | 128.11 | 29.37 | 1 063 | 箱式取样器 | |
HOBAB1-S6 | 128.04 | 30.24 | 399 | 箱式取样器 | |
HOBAB1-S5 | 127.99 | 30.52 | 416 | 箱式取样器 | |
HOBAB1-S16-1 | 128.06 | 29.10 | 1 039 | 箱式取样器 | |
HOBAB1-S1 | 128.63 | 30.28 | 838 | 箱式取样器 | |
HOBAB1-S11 | 128.04 | 29.56 | 972 | 箱式取样器 | |
HOBAB1-S16-2 | 128.13 | 29.15 | 1 134 | 箱式取样器 | |
HOBAB1-S15-1 | 128.08 | 29.35 | 1 069 | 箱式取样器 | |
HOBAB1-S7 | 128.03 | 29.97 | 439 | 箱式取样器 | |
HOBAB1-S4-2 | 128.33 | 30.32 | 598 | 箱式取样器 | |
HOBAB1-S14 | 127.62 | 29.83 | 288 | 箱式取样器 | |
冲绳海槽中部 | TVGC7 | 127.10 | 27.52 | 1 167 | 电视抓斗 |
TVG6-2 | 127.08 | 27.26 | 1 353 | 电视抓斗 | |
TVG6-1 | 127.06 | 27.24 | 1 615 | 电视抓斗 | |
HOBAB2-S5 | 126.98 | 27.67 | 1 527 | 电视抓斗 | |
HOBAB2-S7 | 126.93 | 27.56 | 1 589 | 箱式取样器 | |
HOBAB2-T6 | 126.90 | 27.81 | 1 190 | 箱式取样器 | |
HOBAB2-T4 | 126.89 | 27.79 | 1 028 | 箱式取样器 | |
HOBAB2-T3 | 126.89 | 27.79 | 1 039 | 箱式取样器 | |
HOBAB2-T1 | 126.97 | 27.55 | 1 387 | 箱式取样器 | |
冲绳海槽南部 | TVG-C4 | 123.20 | 24.94 | 1 748 | 电视抓斗 |
TVG-C5 | 124.36 | 25.25 | 2 207 | 电视抓斗 | |
TVG11-1 | 122.58 | 25.06 | 1 222 | 电视抓斗 | |
HOBAB3-T9' | 122.69 | 24.84 | 1 381 | 箱式取样器 | |
HOBAB3-T4 | 122.74 | 25.05 | 1 520 | 箱式取样器 | |
HOBAB3-T3'-2 | 122.57 | 25.07 | 1 206 | 箱式取样器 | |
HOBAB3-T3' | 122.58 | 25.07 | 1 200 | 箱式取样器 | |
HOBAB3-T2 | 122.58 | 25.07 | 1 368 | 箱式取样器 | |
台湾岛以东海域 | TVG12-1 | 122.93 | 22.85 | 3 443 | 电视抓斗 |
表1 本文所用表层沉积物样品站位信息
Table 1 Station information for all the surface sediment samples in this study
区域 | 表层样站位 | 北纬/(°) | 东经/(°) | 水深/m | 采样方式 |
---|---|---|---|---|---|
冲绳海槽北部 | HOBAB1-S2 | 128.74 | 29.96 | 938 | 箱式取样器 |
HOBAB1-S3B | 128.44 | 30.24 | 874 | 箱式取样器 | |
HOBAB1-S12 | 127.88 | 29.61 | 847 | 箱式取样器 | |
HOBAB1-S13 | 127.74 | 29.75 | 490 | 箱式取样器 | |
HOBAB1-S17 | 127.69 | 29.35 | 994 | 箱式取样器 | |
HOBAB1-S15-2 | 128.11 | 29.37 | 1 063 | 箱式取样器 | |
HOBAB1-S6 | 128.04 | 30.24 | 399 | 箱式取样器 | |
HOBAB1-S5 | 127.99 | 30.52 | 416 | 箱式取样器 | |
HOBAB1-S16-1 | 128.06 | 29.10 | 1 039 | 箱式取样器 | |
HOBAB1-S1 | 128.63 | 30.28 | 838 | 箱式取样器 | |
HOBAB1-S11 | 128.04 | 29.56 | 972 | 箱式取样器 | |
HOBAB1-S16-2 | 128.13 | 29.15 | 1 134 | 箱式取样器 | |
HOBAB1-S15-1 | 128.08 | 29.35 | 1 069 | 箱式取样器 | |
HOBAB1-S7 | 128.03 | 29.97 | 439 | 箱式取样器 | |
HOBAB1-S4-2 | 128.33 | 30.32 | 598 | 箱式取样器 | |
HOBAB1-S14 | 127.62 | 29.83 | 288 | 箱式取样器 | |
冲绳海槽中部 | TVGC7 | 127.10 | 27.52 | 1 167 | 电视抓斗 |
TVG6-2 | 127.08 | 27.26 | 1 353 | 电视抓斗 | |
TVG6-1 | 127.06 | 27.24 | 1 615 | 电视抓斗 | |
HOBAB2-S5 | 126.98 | 27.67 | 1 527 | 电视抓斗 | |
HOBAB2-S7 | 126.93 | 27.56 | 1 589 | 箱式取样器 | |
HOBAB2-T6 | 126.90 | 27.81 | 1 190 | 箱式取样器 | |
HOBAB2-T4 | 126.89 | 27.79 | 1 028 | 箱式取样器 | |
HOBAB2-T3 | 126.89 | 27.79 | 1 039 | 箱式取样器 | |
HOBAB2-T1 | 126.97 | 27.55 | 1 387 | 箱式取样器 | |
冲绳海槽南部 | TVG-C4 | 123.20 | 24.94 | 1 748 | 电视抓斗 |
TVG-C5 | 124.36 | 25.25 | 2 207 | 电视抓斗 | |
TVG11-1 | 122.58 | 25.06 | 1 222 | 电视抓斗 | |
HOBAB3-T9' | 122.69 | 24.84 | 1 381 | 箱式取样器 | |
HOBAB3-T4 | 122.74 | 25.05 | 1 520 | 箱式取样器 | |
HOBAB3-T3'-2 | 122.57 | 25.07 | 1 206 | 箱式取样器 | |
HOBAB3-T3' | 122.58 | 25.07 | 1 200 | 箱式取样器 | |
HOBAB3-T2 | 122.58 | 25.07 | 1 368 | 箱式取样器 | |
台湾岛以东海域 | TVG12-1 | 122.93 | 22.85 | 3 443 | 电视抓斗 |
图3 冲绳海槽表层沉积物中放射虫特征属种空间分布图(%)和放射虫丰度(枚/g) (a) T.octacantha group, (b) E.furcata, (c) D.tetrathalamus, (d) D.truncatum/profunda group, (e) P.pylonium,(f) S.tetras, (g) P.clausus, (h) B.scutum, (i) P.praetextum, (j) P.spinosa, (k) L.buetschlii,(l) L.weddelium, (m) Spongodiscidae spp.(juvenile), (n) S.resurgens, (o) 放射虫丰度。
Fig.3 Spatial distribution of radiolarian characteristics species (%) and radiolarian abundance (skeleton/g) in surface sediments of the Okinawa Trough
图4 表层沉积物中放射虫中层水种和深水种相对含量分布与水深散点图 图中排除了位于台湾岛以东的TVG12-1样品数据。
Fig.4 Scatter map of relative abundances of radiolarian species and species groups against water depth. The data of TVG12-1 sample located at the east of Taiwan Island are excluded from the figure.
[1] |
PISIAS N G, ROELOFS A, WEBER M. Radiolarian-based transfer functions for estimating mean surface ocean temperatures and seasonal range[J]. Paleoceanography, 1997, 12(3): 365-379.
DOI URL |
[2] |
MATSUZAKI K M, ITAKI T, KIMOTO K. Vertical distribution of polycystine radiolarians in the northern East China Sea[J]. Marine Micropaleontology, 2016, 125: 66-84.
DOI URL |
[3] |
MATSUZAKI K M, ITAKI T, SUGISAKI S. Polycystine radiolarians vertical distribution in the subtropical northwest Pacific during spring 2015(KS15-4)[J]. Paleontological Research, 2020, 24(2): 113-133.
DOI URL |
[4] |
GALLAGHER S J, KITAMURA A, IRYU Y, et al. The Pliocene to recent history of the Kuroshio and Tsushima currents: a multi-proxy approach[J]. Progress in Earth and Planetary Science, 2015, 2: 17.
DOI URL |
[5] | ANDRES M, WIMBUSH M, PARK J H, et al. Observations of Kuroshio flow variations in the East China Sea[J]. Journal of Geophysical Research Atmospheres, 2008, 113(C5): C05013. |
[6] | YAN Q S, SHI X F. Petrologic perspectives on tectonic evolution of a nascent basin(Okinawa Trough)behind Ryukyu Arc: a review[J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. |
[7] | 金翔龙, 喻普之. 冲绳海槽的构造特征与演化[J]. 中国科学: B辑, 1987, 17(2): 196-203. |
[8] | 曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造, 岩浆作用与热液活动[J]. 海洋科学集刊, 2016, 51: 3-36. |
[9] | 地质矿产部海洋地质综合研究大队. 冲绳海槽第四纪微体生物群及其地质意义[M]. 北京: 地质出版社, 1988. |
[10] |
KIM R A, LEE K E, BAE S W. Sea surface temperature proxies(alkenones, foraminiferal Mg/Ca, and planktonic foraminiferal assemblage)and their implications in the Okinawa Trough[J]. Progress in Earth and Planetary Science, 2015, 2(1): 1-16.
DOI URL |
[11] |
JIAN Z M, WANG P X, SAITO Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319.
DOI URL |
[12] |
LI T G, LIU Z X, HALL M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1/2/3/4): 133-146.
DOI URL |
[13] |
SHI X, WU Y, ZOU J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1(~88 ka)[J]. Climate of the Past, 2014, 10(5): 1735-1750.
DOI URL |
[14] | HAECKEL E H P A, EXPEDITION C, HAECKEL E H P A, EXPEDITION C. Report on the radiolaria collected by HMS. challenger during the years 1873-1876[M]. Edinburgh: Eyre & Spottiswoode, 1887. |
[15] | TAKAHASHI K. Radiolaria: flux, ecology, and taxonomy in the Pacific and Atlantic[M]. Woods Hole, America: Woods Hole Oceanographic Institution, 1991. |
[16] | 陈木宏, 谭智源. 南海中、北部沉积物中的放射虫[M]. 北京: 科学出版社, 1996. |
[17] | 张兰兰, 陈木宏, 胡维芬, 等. 现生放射虫的水深分布及其环境指示意义[J]. 热带海洋学报, 2013, 32(6): 101-107. |
[18] | 王汝建, 陈荣华. 冲绳海槽南部表层沉积物中放射虫的初步研究[J]. 同济大学学报(自然科学版), 1996, 24(6): 670-676. |
[19] | 程振波, 鞠小华. 冲绳海槽中部表层沉积物中的放射虫[J]. 海洋与湖沼, 1998, 29(6): 656-662. |
[20] | 常凤鸣, 庄丽华, 李铁刚, 等. 冲绳海槽北部表层沉积物中的放射虫组合[J]. 海洋与湖沼, 2003, 34(2): 208-216. |
[21] | WANG R J, JIAN Z M, LI B H, et al. Paleoceanographic implications of radiolaria in the southern Okinawa Trough over the last 20000 years[J]. Science in China:Series D, 1998, 41(1): 21-27. |
[22] |
CHANG F M, LI T G, ZHUANG L H, et al. A Holocene paleotemperature record based on radiolaria from the northern Okinawa Trough(East China Sea)[J]. Quaternary International, 2008, 183(1): 115-122.
DOI URL |
[23] | 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37. |
[24] |
TADA R, ZHENG H B, CLIFT P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3: 4.
DOI URL |
[25] | WANG P, LI Q, LI C F. Paleoceanography and sea-level changes[J]. Developments in Marine Geology. 2014, 6: 469-570. |
[26] | 邹建军, 石学法. 末次冰期以来北太平洋中层水演化:研究进展与展望[J]. 地学前缘, 2017, 24(4): 141-151. |
[27] |
NISHINA A, NAKAMURA H, PARK J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6092-6102.
DOI URL |
[28] |
ZHANG Q, CHEN M H, ZHANG L L, et al. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 337-350.
DOI URL |
[29] | 谭智源, 陈木宏. 中国近海的放射虫[M]. 北京: 科学出版社, 1999. |
[30] | ITAKI T. Last Glacial to Holocene polycystine radiolarians from the Japan Sea[J]. News of Osaka Micropaleontologist Society, Special Publication, 2009, 14: 43-89. |
[31] | MATSUZAKI K M, SUZUKI N, NISHI H. Middle to upper Pleistocenepolycystine radiolarians from Hole 902-C9001C, northwestern Pacific[J]. Paleontological Research, 2015, 19(Suppl 1): 1-77. |
[32] | ZHANG L, SUZUKI N. Taxonomy and species diversity of Holocene pylonioid radiolarians from surface sediments of the northeastern Indian Ocean[J]. Palaeontologia Electronica, 2017, 20(3): 1-68. |
[33] |
NIMMERGUT A, ABELMANN A. Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(3): 463-493.
DOI URL |
[34] |
ISHITANI Y, TAKAHASHI K. The vertical distribution ofradiolaria in the waters surrounding Japan[J]. Marine Micropaleontology, 2007, 65(3/4): 113-136.
DOI URL |
[35] | ISHITANI Y, TAKAHASHI K, OKAZAKI Y, et al. Vertical and geographic distribution of selected radiolarian species in the North Pacific[J]. Micropaleontology, 2008: 27-39. |
[36] |
ZHANG LL, SUZUKI N, NAKAMURA Y, et al. Modern shallow water radiolarians with photosynthetic microbiota in the western North Pacific[J]. Marine Micropaleontology, 2018, 139: 1-27.
DOI URL |
[37] |
HU W F, ZHANG LL, CHEN M H, et al. Distribution of living radiolarians in spring in the South China Sea and its responses to environmental factors[J]. Science China: Earth Sciences, 2015, 58(2): 270-285.
DOI URL |
[38] | YAMASHITA H, TAKAHASHI K, FUJITANI N. Zonal and vertical distribution of radiolarians in the western and central equatorial Pacific in January 1999[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2002, 49(13/14): 2823-2862. |
[39] |
ZHANG L L, CHEN M H, XIANG R, et al. Distribution of polycystine radiolarians in the northern South China Sea in September 2005[J]. Marine Micropaleontology, 2009, 70(1/2): 20-38.
DOI URL |
[40] |
QU H X, WANG J B, XU Y, et al. Radiolarian assemblage as an indicator of environmental conditions in the marginal seas of the western North Pacific[J]. Marine Micropaleontology, 2020, 157: 101859.
DOI URL |
[41] |
ITAKI T, MINOSHIMA K, KAWAHATA H. Radiolarian flux at an images site at the western margin of the subarctic Pacific and its seasonal relationship to the Oyashio cold and Tsugaru warm currents[J]. Marine Geology, 2008, 255(3/4): 131-148.
DOI URL |
[42] |
KAMIKURI S I, MOTOYAMA I, NISHIMURA A. Radiolarian assemblages in surface sediments along Longitude 175°E in the Pacific Ocean[J]. Marine Micropaleontology, 2008, 69(2): 151-172.
DOI URL |
[43] |
MATSUZAKI K M, ITAKI T. New northwest Pacific radiolarian data as a tool to estimate past sea surface and intermediate water temperatures[J]. Paleoceanography, 2017, 32(3): 218-245.
DOI URL |
[44] |
LIU L, ZHANG Q, CHEN M H, et al. Radiolarian biogeography in surface sediments of the northwest Pacific marginal seas[J]. Science China: Earth Sciences, 2017, 60(3): 517-530.
DOI URL |
[45] |
CHANG F M, ZHUANG L H, LI T G, et al. Radiolarian fauna in surface sediments of the northeastern East China Sea[J]. Marine Micropaleontology, 2003, 48(3/4): 169-204.
DOI URL |
[46] |
BJØRKLUND K R, CORTESE G, SWANBERG N, et al. Radiolarian faunal provinces in surface sediments of the Greenland, Iceland and Norwegian(GIN)Seas[J]. Marine Micropaleontology, 1998, 35(1/2): 105-140.
DOI URL |
[47] |
MOTOYAMA I, YAMADA Y, HOSHIBA M, et al. Radiolarian assemblages in surface sediments of the Japan Sea[J]. Paleontological Research, 2016, 20(3): 176-206.
DOI URL |
[48] |
OKAZAKI Y, TAKAHASHI K, ITAKI T, et al. Comparison of radiolarian vertical distributions in the Okhotsk Sea near the Kuril Islands and in the northwestern North Pacific off Hokkaido Island[J]. Marine Micropaleontology, 2004, 51(3/4): 257-284.
DOI URL |
[49] |
WANG R J, XIAO W S, LI Q Y, et al. Polycystine radiolarians in surface sediments from the Bering Sea Green Belt area and their ecological implication for paleoenvironmental reconstructions[J]. Marine Micropaleontology, 2006, 59(3/4): 135-152.
DOI URL |
[50] | CHEN C T A, WANG S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20675-20686. |
[51] |
MATSUZAKI K M, ITAKI T, TADA R. Paleoceanographic changes in the northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages(IODP site U1429)[J]. Progress in Earth and Planetary Science, 2019, 6: 22.
DOI URL |
[52] |
ITAKI T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea[J]. Marine Micropaleontology, 2003, 47(3/4): 253-270.
DOI URL |
[1] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
[2] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[3] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
[4] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[5] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424. |
[6] | 周尚, 徐继尚, 刘勇, 李广雪, 李安龙, 曹立华, 翟科, 徐继正, 权永峥. 西太暖池区生物组分对海底表层沉积物物理力学性质的影响[J]. 地学前缘, 2022, 29(5): 119-132. |
[7] | 陈朝晖, 林霄沛, 马昕, 管延锋, 周春, 张岳奇, 马克. 西北太平洋黑潮延伸体观测回顾和展望[J]. 地学前缘, 2022, 29(5): 13-22. |
[8] | 谭宁, 张仲石, 郭正堂, 王会军. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5): 310-321. |
[9] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[10] | 冯铄, 刘志飞, Penjai SOMPONGCHAIYAKUL, 林宝治, Martin G. WIESNER. 泰国湾表层沉积物陆源碎屑的粒度特征及其展现的沉积动力环境[J]. 地学前缘, 2022, 29(4): 211-220. |
[11] | 迟明慧, 秦延文, 杨晨晨, 温泉, 孙宁, 竹怀林, 张雷. 潮白河中游沉积物氮磷和有机质分布特征及评价[J]. 地学前缘, 2022, 29(4): 448-454. |
[12] | 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 2022, 29(4): 84-92. |
[13] | 张小刚, 张芳, 李书鹏, 韦云霄, 侯德义, 李广贺. 污染场地原位热修复技术与能效分析[J]. 地学前缘, 2022, 29(3): 200-206. |
[14] | 田飞, 王永, 袁路朋, 汤文坤. 浑善达克沙地碱湖表层沉积物的粒度、沉积有机质变化特征与指示意义[J]. 地学前缘, 2022, 29(2): 317-326. |
[15] | 唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||