地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 47-66.DOI: 10.13745/j.esf.sf.2020.6.21
收稿日期:
2020-06-01
修回日期:
2020-07-01
出版日期:
2020-11-02
发布日期:
2020-11-02
作者简介:
欧 强(1976—),男,教授,博士生导师,主要从事动物门类起源以及寒武纪大爆发研究。E-mail: ouqiang@cugb.edu.cn
基金资助:
Received:
2020-06-01
Revised:
2020-07-01
Online:
2020-11-02
Published:
2020-11-02
摘要:
叶足动物在显生宙最早期的海洋中曾一度繁盛,但如今茫茫大海中它们已杳无踪影。不过,学术界主流认为它们并没有绝灭——早期叶足动物的一个分支成功演化出原始的节肢动物,成就了当今地球上最庞大的动物家族(六足类、甲壳类、多足类、螯肢类等);叶足动物另一个分支则离开海洋,保持基本躯体构型,变身为陆生叶足动物,然而历经沧桑后,仅余一两脉(有爪动物及缓步动物)残喘幸存至今。这个史诗般的精彩演化故事,深深吸引了众多学者竞先求索。近30年来,以我国云南澄江生物群为代表的一系列寒武纪特异埋藏化石库中发现了大量叶足动物化石。经研究,学术界迄今似已破解了早期叶足动物重重疑团,足以额手称庆。然而治学须严谨,考证不偏狭。作者认为,围绕早期叶足动物的迷雾尚未消散,许多问题还有待解答,部分观点仍需确证。本文对早期叶足类研究的部分主流观点提出一些不同看法,并对尚未破解的疑难问题提出尝试性的见解和猜想。
中图分类号:
欧强. 寒武纪叶足动物:困惑与思考[J]. 地学前缘, 2020, 27(6): 47-66.
OU Qiang. Cambrian lobopodians: confusion and consideration[J]. Earth Science Frontiers, 2020, 27(6): 47-66.
图1 叶足动物谱系位置及部分寒武纪代表 A—泛节肢动物谱系树,主流观点认为干群叶足动物(非单系群)、现代叶足动物(有爪类+缓步类)、节肢动物(干群+冠群)构成泛节肢动物(单系群),“†”示意叶足动物的化石类群,椭圆淡蓝区域代表干群;B—中华微网虫(Microdictyon sinicum);C—长足啰哩山虫(Luolishania longicruris);D—无饰贫腿虫(Paucipodia inermis);E—强壮怪诞虫(Hallucigenia fortis);F—凶猛爪网虫(Onychodictyon ferox);G—云南火把虫(Facivermis yunnanicus);H—秀丽触角棘足虫(Antennacanthopodia gracilis)。箭头示身体前端。资料来源:照片B-G由马晓娅研究员提供。比例尺:5 mm(B-H)。
Fig.1 Phylogenetic position and some fossil representatives of Cambrian lobopodians
序号 | 属种 | 文献 | 古地理及岩性 | 年代地层 |
---|---|---|---|---|
1 | Xenusion auerswaldae | [ | 波罗的古陆;Kalmarsund砂岩 | 寒武系第2~3阶 |
2 | Microdictyon sinicum | [ | 扬子板块;澄江泥岩 (帽天山“页岩”) | 寒武系第3阶 |
3 | Facivermis yunnanicus | [ | ||
4 | Luolishania longicruris | [ | ||
5 | Cardiodictyon catenulum | [ | ||
6 | Onychodictyon ferox | [ | ||
7 | Paucipodia inermis | [ | ||
8 | Hallucigenia fortis | [ | ||
9 | Megadictyon haikouensis | [ | ||
10 | Miraluolishania haikouensis | [ | ||
11 | Jianshanopodia decora | [ | ||
12 | Onychodictyon gracilis (?) | [ | ||
13 | Antennacanthopodia gracilis | [ | ||
14 | Diania cactiformis (?) | [ | ||
15 | Lenisambulatrix humboldti | [ | ||
16 | Unnamed lobopodian | [ | 扬子板块;清江页岩 | |
17 | Collinsium ciliosum | [ | 扬子板块;小石坝泥岩 | |
18 | Tritonychus phanerosarkus | [ | 扬子板块;奥斯顿型(灰岩) | |
19 | Hadranax augustus | [ | 劳伦古陆;Sirius Passet页岩 | |
20 | Kerygmachela kierkegaardi | [ | ||
21 | Pambdelurion whittingtoni | [ | ||
22 | Siberion lenaicus | [ | 西伯利亚古陆;Sinsk藻类透镜体 | 寒武系第4阶 |
23 | Hallucigenia hongmeia | [ | 扬子板块;关山泥岩 | |
24 | Collinsiumsp. | [ | ||
25 | Unnamed “Collins’ monster” | [ | 冈瓦纳古陆;鸸鹋湾页岩 | |
26 | Microdictyonsp. | [ | 华南古陆;凯里页岩 | 寒武系乌溜阶 |
27 | Acinocricus stichus | [ | 劳伦古陆;Spence页岩 | |
28 | Collinsovermis monstruosus | [ | 劳伦古陆;布尔吉斯页岩 | |
29 | Aysheaia pedunculata | [ | ||
30 | Hallucigenia sparsa | [ | ||
31 | Ovatiovermis cribratus | [ | ||
32 | Orstenotubulus evamuellerae | [ | 波罗的古陆;奥斯顿型(灰岩) | 寒武系鼓山阶 |
33 | Unnamed luolishaniid | [ | 劳伦古陆;Fezouata泥岩 | 奥陶系特马豆克阶 |
34 | Unnamed xenusiid (?) | [ | 冈瓦纳古陆;Soom页岩 | 奥陶系赫南特阶 |
35 | Unnamed lobopodian (?) | [ | 劳伦古陆;Eramosa白云岩 | 志留系温洛克统 |
36 | Carbotubulus waloszeki | [ | 劳伦古陆;梅逊溪菱铁矿结核 | 上石炭统 |
表1 已报道的古生代海生叶足动物软躯体化石名录
Table 1 A list of Paleozoic marine lobopodians preserved with soft tissues
序号 | 属种 | 文献 | 古地理及岩性 | 年代地层 |
---|---|---|---|---|
1 | Xenusion auerswaldae | [ | 波罗的古陆;Kalmarsund砂岩 | 寒武系第2~3阶 |
2 | Microdictyon sinicum | [ | 扬子板块;澄江泥岩 (帽天山“页岩”) | 寒武系第3阶 |
3 | Facivermis yunnanicus | [ | ||
4 | Luolishania longicruris | [ | ||
5 | Cardiodictyon catenulum | [ | ||
6 | Onychodictyon ferox | [ | ||
7 | Paucipodia inermis | [ | ||
8 | Hallucigenia fortis | [ | ||
9 | Megadictyon haikouensis | [ | ||
10 | Miraluolishania haikouensis | [ | ||
11 | Jianshanopodia decora | [ | ||
12 | Onychodictyon gracilis (?) | [ | ||
13 | Antennacanthopodia gracilis | [ | ||
14 | Diania cactiformis (?) | [ | ||
15 | Lenisambulatrix humboldti | [ | ||
16 | Unnamed lobopodian | [ | 扬子板块;清江页岩 | |
17 | Collinsium ciliosum | [ | 扬子板块;小石坝泥岩 | |
18 | Tritonychus phanerosarkus | [ | 扬子板块;奥斯顿型(灰岩) | |
19 | Hadranax augustus | [ | 劳伦古陆;Sirius Passet页岩 | |
20 | Kerygmachela kierkegaardi | [ | ||
21 | Pambdelurion whittingtoni | [ | ||
22 | Siberion lenaicus | [ | 西伯利亚古陆;Sinsk藻类透镜体 | 寒武系第4阶 |
23 | Hallucigenia hongmeia | [ | 扬子板块;关山泥岩 | |
24 | Collinsiumsp. | [ | ||
25 | Unnamed “Collins’ monster” | [ | 冈瓦纳古陆;鸸鹋湾页岩 | |
26 | Microdictyonsp. | [ | 华南古陆;凯里页岩 | 寒武系乌溜阶 |
27 | Acinocricus stichus | [ | 劳伦古陆;Spence页岩 | |
28 | Collinsovermis monstruosus | [ | 劳伦古陆;布尔吉斯页岩 | |
29 | Aysheaia pedunculata | [ | ||
30 | Hallucigenia sparsa | [ | ||
31 | Ovatiovermis cribratus | [ | ||
32 | Orstenotubulus evamuellerae | [ | 波罗的古陆;奥斯顿型(灰岩) | 寒武系鼓山阶 |
33 | Unnamed luolishaniid | [ | 劳伦古陆;Fezouata泥岩 | 奥陶系特马豆克阶 |
34 | Unnamed xenusiid (?) | [ | 冈瓦纳古陆;Soom页岩 | 奥陶系赫南特阶 |
35 | Unnamed lobopodian (?) | [ | 劳伦古陆;Eramosa白云岩 | 志留系温洛克统 |
36 | Carbotubulus waloszeki | [ | 劳伦古陆;梅逊溪菱铁矿结核 | 上石炭统 |
性状 | 寒武纪叶足动物 Cambrian lobopodians | 有爪动物 Onychophorans | 缓步动物 Tardigrades | 节肢动物 Arthropods |
---|---|---|---|---|
蜕皮 (Ecdysis) a | √ | √ | √ | √ |
α-几丁质的角皮 (Alpha-chitin cuticle) | ? | √ | √ | √ |
局部硬化的角皮结构 b(Scattered cuticular sclerites) | √/× | × | √/× | √/× |
体表环纹 (Body surface annulation) | √ | √ | × | × |
铰合的硬化骨板 (Articulated sclerites) | × | × | × | √ |
内衬角皮的气管 (Tracheas lined with cuticle) | ? | √ | × | √/× |
分节的附肢 (Jointed limbs) | × | × | × | √ |
叶足 (Lobopodous limbs) | √/× | √ | √ | × |
附肢末端具爪 (Limbs with claws) | √ | √ | √ | √ |
顶端口 (Anterior mouth) | √/× | × | √ | × |
硬化的口器 (Sclerotized mouthparts) | √/× | √ | √ | √ |
原脑附肢 (Protocerebral appendage) | √/× | √ | × | × |
单眼 (Ocelli) | √ | √ | √/× | √/× |
复眼 (Compound eyes) | × | × | × | √/× |
身体分段 (Segmented body) | √ | √ | √ | √ |
血腔 (Haemocoel) | ? | √ | √ | √ |
开放的循环系统 (Open circulatory system) | ? | √ | × | √ |
马氏管 (Malpighian tubules) | ? | × | √ | √ |
表达在胚胎分段条带的engrailed基因 | ? | √ | √ | √ |
1对腹神经管 (A pair of ventral nerve cords) | ? | √ | √ | √ |
躯干腹侧神经节 (Trunk ventral ganglions) | ? | × | √ | √ |
头部体节数目 (Somite number of cephalon) | 1~3(?) | 3 | 1(?) | 2~6 |
身体分部 (Tagmosis) | 弱 | 弱 | 弱 | 强 |
躯干肌肉系统 (Trunk musculature) | 环肌;纵肌 | 环肌;纵肌不分段 | 无环肌;纵肌分段 | 无环肌;纵肌分段 |
附肢肌肉系统 (Limb musculature) | ? | 外附肌+内附肌 | 外附肌+内附肌 | 外附肌+内附肌 |
表2 寒武纪叶足动物与现代有爪类、缓步类、节肢类性状对比[7,28,36,41,59-62,64,71-81]
Table 2 Similarities (homologous or analogous) and differences between modern onychophorans, tardigrades, arthropods and Cambrian lobopodians[7,28,36,41,59-62,64,71-81]
性状 | 寒武纪叶足动物 Cambrian lobopodians | 有爪动物 Onychophorans | 缓步动物 Tardigrades | 节肢动物 Arthropods |
---|---|---|---|---|
蜕皮 (Ecdysis) a | √ | √ | √ | √ |
α-几丁质的角皮 (Alpha-chitin cuticle) | ? | √ | √ | √ |
局部硬化的角皮结构 b(Scattered cuticular sclerites) | √/× | × | √/× | √/× |
体表环纹 (Body surface annulation) | √ | √ | × | × |
铰合的硬化骨板 (Articulated sclerites) | × | × | × | √ |
内衬角皮的气管 (Tracheas lined with cuticle) | ? | √ | × | √/× |
分节的附肢 (Jointed limbs) | × | × | × | √ |
叶足 (Lobopodous limbs) | √/× | √ | √ | × |
附肢末端具爪 (Limbs with claws) | √ | √ | √ | √ |
顶端口 (Anterior mouth) | √/× | × | √ | × |
硬化的口器 (Sclerotized mouthparts) | √/× | √ | √ | √ |
原脑附肢 (Protocerebral appendage) | √/× | √ | × | × |
单眼 (Ocelli) | √ | √ | √/× | √/× |
复眼 (Compound eyes) | × | × | × | √/× |
身体分段 (Segmented body) | √ | √ | √ | √ |
血腔 (Haemocoel) | ? | √ | √ | √ |
开放的循环系统 (Open circulatory system) | ? | √ | × | √ |
马氏管 (Malpighian tubules) | ? | × | √ | √ |
表达在胚胎分段条带的engrailed基因 | ? | √ | √ | √ |
1对腹神经管 (A pair of ventral nerve cords) | ? | √ | √ | √ |
躯干腹侧神经节 (Trunk ventral ganglions) | ? | × | √ | √ |
头部体节数目 (Somite number of cephalon) | 1~3(?) | 3 | 1(?) | 2~6 |
身体分部 (Tagmosis) | 弱 | 弱 | 弱 | 强 |
躯干肌肉系统 (Trunk musculature) | 环肌;纵肌 | 环肌;纵肌不分段 | 无环肌;纵肌分段 | 无环肌;纵肌分段 |
附肢肌肉系统 (Limb musculature) | ? | 外附肌+内附肌 | 外附肌+内附肌 | 外附肌+内附肌 |
图2 寒武纪典型叶足动物形态及同源对比 A,B,C—多毛柯林斯虫(Collinsium ciliosum);A—模式标本(YKLP 12127),示前6对特化具长刚毛的叶足、背-侧部环状分布的棘刺状骨板、头部结构等特征[3];B—A中聚焦框内放大,示躯干表面密集的短刚毛;C—另一标本前端,示头部的骨板、触角、可能的眼睛(YKLP 12131);D—凶猛爪网虫(Onychodictyon ferox)完整标本(ELEL-SJ101888A),示12对叶足及10对背骨板,箭头指示顶端口[7];E—该标本的前端放大,示顶端口、吻突、头部环状骨板、触角、眼睛、咽球、肠道等;F—凶猛爪网虫单个背骨板(棘刺未保存);G—现代有爪动物(Tasmanipatus barretti),产于塔斯马尼亚,箭头示叶足的外附肌在背部内侧的附着点;H—现代缓步动物(Macrobiotus sp.)前端的共焦激光照片(对比E),示顶端口、口道、口针、咽球、等端口;I—凶猛爪网虫另一标本(ELEL-SJ100307)前端放大,箭头指示透镜状单眼;J—现代有爪动物(Euperipatoides rowelli)幼体,示触角、透镜状单眼(箭头指示)、黏液乳突及叶足;K,L—分别为凶猛爪网虫及现代有爪动物的钩爪。资料来源:柯林斯虫照片(A-C)由杨杰研究员提供;现代有爪类及缓步类图像(G,H,J,L)由Georg Mayer教授提供。
Fig.2 Morphology and homologous correlation of typical Cambrian lobopodians
图3 寒武纪叶足动物与侏罗纪及现代六足类节肢动物幼虫对比 A,B,C—侏罗奇异虫(Qiyia jurassica)模式标本(STMN65-1),腹-斜侧压,示胸部腹侧吸盘、前6对粗短的原足、第7对细长的原足、肛突等结构[88];B—原足放大视图,示表面刚毛及末端的两排钩爪;C—身体末端放大视图,示2对肛突和1对末突(具纵列的气孔及棘刺),箭头指示气孔;D—现代肉蝇(Cuterebra sp.)完全发育的第三期幼虫(前视图),示体表离散分布的硬化棘刺;E,F,G,H—秀丽触角棘足虫(Antennacanthopodia gracilis)模式标本(ELEL-EJ081876B)[31];F,G,H—叶足放大视图,示表面环状、错落分布的棘刺(箭头指示)。资料来源:侏罗奇异虫照片(A-C)由王博研究员提供。AP:肛突;AT:触角;HK:钩爪;L1-L8:第1~8对叶足;LP:足垫;MG:中肠;P1-P7:第1~7对原足;SK:吸盘;TK:躯干;TP:末突。比例尺:2 mm(A);1 mm(B-E);200 μm(F-H)。
Fig.3 Comparisons between Cambrian lobopodians and larvae of Jurassic and extant hexapods
图4 寒武纪叶足动物与现代叶足动物的肌肉系统 A—寒武纪叶足动物秀丽触角棘足虫模式标本(Antennacanthopodia gracilis, ELEL-EJ081876B),示叶足内部肌肉组织[31];B,C—现代栉蚕(Euperipatoides rowelli)共焦激光图像,示腿肌、躯干纵肌及环肌;D-I—有爪动物的纳米层析图像,分别示提肌、按肌、启动肌、后动肌、前旋肌及后旋肌[78];J—现代水熊(Hypsibius exemplaris)扫描透射电镜图像[79]。彩色代表腿肌(叶足1~4),灰色代表躯干纵肌等结构。Bc:体腔;Cm:环肌;Crt:牵爪肌;He:头;Lgm:纵肌;Lm:腿肌;Mg:中肠;Om:斜肌。比例尺:A中1 mm;J中20 μm。资料来源:图像B-J由Georg Mayer,Vladimir Gross,Ivo Oliveira,Henry Jahn提供。
Fig.4 Muscular system of Cambrian and modern lobopodians
图5 寒武纪叶足动物与现代有爪动物的头部构造 A—凶猛爪网虫头部构造;B—链状心网虫头部构造;C—强壮怪诞虫头部构造;D—云南火把虫头部构造;E—长足啰哩山虫头部构造;F—秀丽触角棘足虫头部构造;G—现代有爪动物(Euperipatoides)胚胎共焦激光图像(颚的胚芽由人工染黄),头部分段性状可与凶猛爪网虫对比。图片来源:照片C由陈均远研究员提供,D、E由马晓娅研究员提供,G由Georg Mayer教授提供。
Fig.5 Head structures of Cambrian lobopodians and modern onychophorans
图6 节肢动物分节性状起源的两种假说 A—覆盖薄层角皮并具环纹的叶足动物(如寒武纪贫腿虫及温和步行虫,具静水骨骼系统);B—局部出现背骨板(如寒武纪爪网虫及微网虫);C—背骨板增大且叶足出现骨板(潜在的过渡类型);D—演化出关节铰合的外骨骼(见于节肢动物的杠杆式外骨骼系统)。图A-D据文献[108]修改。蓝色区域代表骨板或外骨骼。A’—覆盖薄层角皮并具环纹的叶足动物;B’—角皮整体逐渐增厚,环纹凹褶演化出一系列原始关节膜;C’—角皮继续整体增厚及硬化,演化出原始的外骨骼,同时原始关节膜数量逐渐减少;D’—演化出关节铰合的外骨骼。
Fig.6 Two hypotheses on the origin of articulation in arthropods
[1] | HUTCHINSON G E. Restudy of some Burgess Shale fossils[J]. Proceedings of the United States National Museum, 1930, 78(2854): 1-11. |
[2] | WHITTINGTON H B. The lobopod animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1979, 285(1010): 408. |
[3] | YANG J, ORTEGA-HERNÁNDEZ J, GERBER S, et al. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8678-8683. |
[4] |
CARON J B, ARIA C. Cambrian suspension-feeding lobopodians and the early radiation of panarthropods[J]. BMC Evolutionary Biology, 2017, 17(1): 1-14.
DOI URL |
[5] | 侯先光, 陈均远. 云南澄江早寒武世节肢类与环节类中间性生物: Luolishania gen. nov.[J]. 古生物学报, 1989, 28(2): 207-213. |
[6] |
RAMSKÖLD L, HOU X G. New early Cambrian animal and onychophoran affinities of enigmatic metazoans[J]. Nature, 1991, 351(6323): 225-228.
DOI URL |
[7] | OU Q, SHU D G, MAYER G. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda[J]. Nature Communications, 2012, 3(1): 451-459. |
[8] | LEGG D A, SUTTON M D, EDGECOMBE G D. Arthropod fossil data increase congruence of morphological and molecular phylogenies[J]. Nature Communications, 2013, 4: 3485. |
[9] |
LIU J N, SHU D G, HAN J, et al. Origin, diversification, and relationships of Cambrian lobopods[J]. Gondwana Research, 2008, 14(1/2): 277-283.
DOI URL |
[10] | WALCOTT C D. Middle Cambrian annelids[J]. Smithsonian Miscellaneous Collections, 1911, 57: 109-144. |
[11] |
WALLISER O H. Rhombocorniculum comleyense n.gen., n.sp.[J]. Paläontologische Zeitschrift, 1958, 32(3): 176-180.
DOI URL |
[12] | MISSARZHEVSKY V V, MAMBETOV A M. The stratigraphy and fauna of the Cambrian-Precambrian boundary beds of the Lesser Karatau range[J]. Trudy Geologischeskogo Instituta Akademia Nauk SSSR, 1981, 326: 1-92. |
[13] | 陈均远. 动物世界的黎明[M]. 南京: 江苏科学技术出版社, 2004. |
[14] |
LIU J N, DUNLOP J A. Cambrian lobopodians: a review of recent progress in our understanding of their morphology and evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(3): 4-15.
DOI URL |
[15] | HOU X G, ALDRIDGE R J, BERGSTROM J, et al. The Cambrian Fossils of Chengjiang, China: the flowering of early animal life[M]. 2nd ed. New York: John Wiley & Sons, 2017. |
[16] |
DZIK J, KRUMBIEGEL G. The oldest ‘onychophoran’ Xenusion: a link connecting phyla?[J]. Lethaia, 1989, 22(2): 169-181.
DOI URL |
[17] | 陈均远, 侯先光, 路浩之. 早寒武世带网状鳞片的蠕形海生动物[J]. 古生物学报, 1989, 28(1): 1-16, 119-122. |
[18] | CHEN J Y, ZHOU G, RAMSKÖLD L. The Cambrian lobopodian Microdictyon sinicum and its broader significance[J]. Bulletin of the National Museum of Nature and Science, 1995, 5: 1-93. |
[19] | 侯先光, 陈均远. 云南澄江早寒武世带触手的蠕形动物: Facivermis gen.nov.[J]. 古生物学报, 1989, 28(1): 32-41. |
[20] |
HOWARD R J. A tube-dwelling early Cambrian lobopodian[J]. Current Biology, 2020, 30: 1-8.
DOI URL |
[21] | MA X Y, HOU X G, BERGSTRÖM J. Morphology of Luolishania longicruris (lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians[J]. Arthropod Structure & Development, 2009, 38(4): 271-291. |
[22] |
HOU X G, RAMSKÖLD L, BERGSTRÖM J. Composition and preservation of the Chengjiang fauna: a lower Cambrian soft-bodied biota[J]. Zoologica Scripta, 1991, 20: 395-411.
DOI URL |
[23] | CHEN J Y, ZHOU G Q, RAMSKÖLD L. A new early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China[J]. Transactions of the Royal Society of Edinburgh, 1995, 85: 275-282. |
[24] |
HOU X G, MA X Y, ZHAO J, et al. The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China[J]. Lethaia, 2004, 37(3): 235-244.
DOI URL |
[25] |
HOU X G, BERGSTRÖM J. Cambrian lobopodians: ancestors of extant onychophorans?[J]. Zoological Journal of the Linnean Society, 1995, 114(1): 3-19.
DOI URL |
[26] | 罗惠麟, 胡世学, 陈良忠, 等. 昆明地区早寒武世澄江动物群[M]. 昆明: 云南科技出版社, 1999: 129. |
[27] |
LIU J N, SHU D G, HAN J, et al. Morpho-anatomy of the lobopod Magadictyon cf.haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China[J]. Acta Zoologica (Stockholm), 2007, 88(4): 279-288.
DOI URL |
[28] |
LIU J N, SHU D G, HAN J, et al. A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods[J]. Chinese Science Bulletin, 2004, 49(10): 1063-1071.
DOI URL |
[29] | LIU J N, SHU D G, HAN J, et al. A large xenusiid lobopod with complex appendages from the lower Cambrian Chengjiang Lagerstätte[J]. Acta Palaeontologica Polonica, 2006, 51(2): 215-222. |
[30] |
LIU J N, SHU D G, HAN J, et al. The lobopod Onychodictyon from the lower Cambrian Chengjiang Lagerstätte revisited[J]. Acta Palaeontologica Polonica, 2008, 53(2): 285-292.
DOI URL |
[31] |
OU Q, LIU J, SHU D, et al. A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstätte, Southwestern China, and its phylogenetic implications[J]. Journal of Paleontology, 2011, 85(3): 587-594.
DOI URL |
[32] |
LIU J N, STEINER M, DUNLOP J A, et al. An armoured Cambrian lobopodian from China with arthropod-like appendages[J]. Nature, 2011, 470: 526-530.
DOI URL |
[33] |
MA X Y, EDGECOMBE G D, LEGG D A, et al. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis[J]. Journal of Systematic Palaeontology, 2014, 12(3/4): 445-457.
DOI URL |
[34] |
OU Q, MAYER G. A Cambrian unarmoured lobopodian, †Lenisambulatrix humboldti gen.et sp.nov., compared with new material of †Diania cactiformis[J]. Scientific Reports, 2018, 8(1): 13667.
DOI URL |
[35] |
FU D J, TONG G H, DAI T, et al. The Qingjiang biota: a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China[J]. Science, 2019, 363(6433): 1338-1342.
DOI URL |
[36] | ZHANG X G, SMITH M R, YANG J, et al. Onychophoran-like musculature in a phosphatized Cambrian lobopodian[J]. Biological Letters, 2016, 12(9): 20160492. |
[37] | BUDD G E, PEEL J S. A new xenusiid lobopod from the early Cambrian Sirius Passet fauna of North Greenland[J]. Palaeontology, 1998, 41(6): 1201-1213. |
[38] |
BUDD G E. A Cambrian gilled lopopod from Greenland[J]. Nature, 1993, 364: 709-711.
DOI URL |
[39] | BUDD G E. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland)[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1998, 89(4): 249-290. |
[40] |
PARK T Y S, KIHM J H, WOO J, et al. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head[J]. Nature Communications, 2018, 9(1): 1019.
DOI URL |
[41] |
VINTHER J, PORRAS L, YOUNG F J, et al. The mouth apparatus of the Cambrian gilled lobopodian Pambdelurion whittingtoni[J]. Palaeontology, 2016, 59(6): 841-849.
DOI URL |
[42] | FORTEY R A, THOMAS R H. Arthropod Relationships[M]. Berlin: Springer, 1998: 125-138. |
[43] | DZIK J. The xenusian-to-anomalocaridid transition within the lobopodians[J]. Bollettino della Societa Paleontologica Italiana, 2011, 50(1): 65-74. |
[44] | STEINER M, HU S X, LIU J N, et al. A new species of Hallucigenia from the Cambrian Stage 4 Wulongqing Formation of Yunnan (South China) and the structure of sclerites in lobopodians[J]. Bulletin of Geosciences, 2012, 87(1): 107-124. |
[45] | JIAO D G, YANG J, ZHANG X G. A superarmoured lobopodian from the Cambrian Stage 4 of southern China[J]. Chinese Science Bulletin, 2016, 61(17): 1372-1376. |
[46] |
GARCÍA-BELLIDO D C, EDGECOMBE G D, PATERSON J R, et al. A ‘Collins’ monster’-type lobopodian from the Emu Bay Shale Konservat-Lagerstätte (Cambrian), South Australia[J]. Alcheringa, 2013, 37(4): 474-478.
DOI URL |
[47] | 赵元龙. 凯里生物群: 5.08亿年前的海洋生物[M]. 贵阳: 贵州科技出版社, 2011: 251. |
[48] | CONWAY MORRIS S, ROBISON R A. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia[J]. The University of Kansas Paleontological Contributions, 1988, 122: 1-48. |
[49] | COLLINS D. Paradise revisited[J]. Rotunda, 1986, 19: 30-39. |
[50] | CARON J B, ARIA C. The Collins’ monster, a pinous suspension-feeding lobopodian from the Cambrian Burgess Shale of British Columbia[J]. Palaeontology, 2020: 1-16. |
[51] |
SMITH M R, CARON J B. Hallucigenia’s head and the pharyngeal armature of early ecdysozoans[J]. Nature, 2015, 523: 75-78.
DOI URL |
[52] | CONWAY MORRIS S. A new entoproct-like organism from the Burgess Shale of British Columbia[J]. Palaeontology, 1978, 20: 833-845. |
[53] |
WALOSZEK D. The ‘Orsten’ window: a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda[J]. Paleontological Research, 2003, 7(1): 71-88.
DOI URL |
[54] |
MAAS A, MAYER G, KRISTENSEN R M, et al. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction[J]. Chinese Science Bulletin, 2007, 52(24): 3385-3392.
DOI URL |
[55] |
VAN ROY P, ORR P J, BOTTING J P, et al. Ordovician faunas of Burgess Shale type[J]. Nature, 2010, 465(7295): 215-218.
DOI URL |
[56] |
WHITTLE R J, GABBOTT S E, ALDRIDGE R J, et al. An Ordovician lobopodian from the Soom Shale Lagerstätte, South Africa[J]. Palaeontology, 2009, 52(3): 561-567.
DOI URL |
[57] |
VON BITTER P H, PURNELL M A, Tetreault D K, et al. Eramosa Lagerstätte: exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada)[J]. Geology, 2007, 35: 879-882.
DOI URL |
[58] |
HAUG J T, MAYER G, HAUG C, et al. A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype[J]. Current Biology, 2012, 22(18): 1673-1675.
DOI URL |
[59] | CARON J B, SMITH M R, HARVEY T H P. Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1767): 20131613. |
[60] |
SMITH M R, ORTEGA-HERNÁNDEZ J. Hallucigenia’s onychophoran-like claws and the case for Tactopoda[J]. Nature, 2014, 514(7522): 363-366.
DOI URL |
[61] |
ZHANG X G, ALDRIDGE R J. Development and diversification of trunk plates of the Lower Cambrian lobopodians[J]. Palaeontology, 2007, 50(2): 401-415.
DOI URL |
[62] |
TOPPER T P, SKOVSTED C B, PEEL J S, et al. Moulting in the lobopodian Onychodictyon from the lower Cambrian of Greenland[J]. Lethaia, 2013, 46(4): 490-495.
DOI URL |
[63] |
VANNIER J, LIU J N, LEROSEY-AUBRIL R, et al. Sophisticated digestive systems in early arthropods[J]. Nature Communications, 2014, 5: 3641.
DOI URL |
[64] |
YOUNG F J, VINTHER J. Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni[J] Palaeontology, 2016, 60: 27-54.
DOI URL |
[65] |
LIU J N, LEROSEY-AUBRIL R, STEINER M, et al. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan[J]. National Science Review, 2018, 5(6): 863-869.
DOI URL |
[66] | DALEY A C, ANTCLIFFE J B, DRAGE H B, et al. Early fossil record of Euarthropoda and the Cambrian Explosion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5323-5331. |
[67] | NIELSEN C. Animal evolution: interrelationships of the living phyla[M]. Oxford: Oxford University Press, 1995. |
[68] |
DUNN C W, HEJNOL A, MATUS D Q, et al. Broad phylogenomic sampling improves resolution of the animal tree of life[J]. Nature, 2008, 452(7188): 745-749.
DOI URL |
[69] |
TELFORD M J, BOURLAT S J, ECONOMOU A, et al. The evolution of the Ecdysozoa[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 1529-1537.
DOI URL |
[70] | ORTEGA-HERNÁNDEZ J, JANSSEN R, BUDD G E. Origin and evolution of the panarthropod head: a palaeobiological and developmental perspective[J]. Arthropod Structure & Development, 2017, 46: 354-379. |
[71] | NIELSEN C. Animal evolution: interrelationships of the living phyla[M]. 3rd ed. Oxford: Oxford University Press, 2012. |
[72] |
ERIKSSON B J, TAIT N N, BUDD G E, et al. The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996)[J]. Development Genes and Evolution, 2009, 219(5): 249-264.
DOI URL |
[73] |
MAYER G, WHITINGTON P M, SUNNUCKS P, et al. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods[J]. BMC Evolutionary Biology, 2010, 10(1): 255.
DOI URL |
[74] | BRUSCA R C, MOORE W, SHUSTER S M. Invertebrates[M]. 3rd ed. Sydney: Sinauer Associates, 2016. |
[75] | RUPPERT E E, FOX R S, BARNES R D. Invertebrate zoology: a functional evolutionary approach[M]. Brooks: Brooks/Cole-Thomson Learning, 2004. |
[76] |
GREVEN H, KAYA M, BARAN T. The presence of α-chitin in Tardigrada with comments on chitin in the Ecdysozoa[J]. Zoologischer Anzeiger, 2016, 264: 11-16.
DOI URL |
[77] | MAYER G, KOCH M. Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae): evidence for the onychophoran antennae being modified legs[J]. Arthropod Structure & Development, 2005, 34(4): 471-480. |
[78] |
OLIVEIRA I D S, KUMERICS A, JAHN H, et al. Functional morphology of a lobopod: case study of an onychophoran leg[J]. Royal Society Open Science, 2019, 6(10): 191200.
DOI URL |
[79] |
GROSS V, MAYER G. Cellular morphology of leg musculature in the water bear Hypsibius exemplaris (Tardigrada) unravels serial homologies[J]. Royal Society Open Science, 2019, 6: 191159.
DOI URL |
[80] |
MAYER G, KAUSCHKE S, RÜDIGER J, et al. Neural markers reveal a one-segmented head in tardigrades (water bears)[J]. PLoS One, 2013, 8(3): e59090.
DOI URL |
[81] |
MAYER G, MARTIN C, RÜDIGER J, et al. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods[J]. BMC Evolutionary Biology, 2013, 13(1): 230.
DOI URL |
[82] | CHEN J Y, LI C W. Biology of the Chengjiang fauna[J]. Bulletin of the National Museum of Nature and Science, 1997(10): 11-106. |
[83] |
CAVE L D, INSOM E, SIMONETTA A M. Advances, divisions, possible relapses and additional problems in understanding the early evolution of the Articulata[J]. Italian Journal of Zoology, 1998, 65(1): 19-38.
DOI URL |
[84] |
LIU J N, HAN J, SIMONETTA A M, et al. New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte[J]. Chinese Science Bulletin, 2006, 51(3): 358-363.
DOI URL |
[85] |
AGUINALDO A M A, TURBEVILLE J M, LINFORD L S, et al. Evidence for a clade of nematodes, arthropods and other moulting animals[J]. Nature, 1997, 387(6632): 489-493.
DOI URL |
[86] | MA X Y, HOU X, ALDRIDGE R J, et al. Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance[J]. Arthropod Structure & Development, 2012, 41(5): 495-504. |
[87] | 欧强. 早期动物树部分关键支系及节点的构建[D]. 北京: 中国地质大学(北京), 2012. |
[88] | CHEN J, WANG B, ENGEL M S, et al. Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva[J]. eLife, 2014(3): e02844. |
[89] | PANGANIBAN G, IRVINE S M, LOWE C. The origin and evolution of animal appendages[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5162-5166. |
[90] |
ERIKSSON B J, TAIT N N, BUDD G E, et al. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem[J]. Development Genes and Evolution, 2010, 220(3): 117-122.
DOI URL |
[91] | WILLIAMSON D I. Caterpillars evolved from onychophorans by hybridogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47): 19901-19905. |
[92] |
ROEDING F, HAGNER-HOLLER S, RUHBERG H, et al. EST sequencing of Onychophora and phylogenomic analysis of Metazoa[J]. Molecular Phylogenetics and Evolution, 2007, 45(3): 942-951.
DOI URL |
[93] |
BALLARD J W O, OLSEN G, FAITH D, et al. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods[J]. Science, 1992, 258(5086): 1345-1348.
DOI URL |
[94] | HINTON H E. On the structure, function. and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory[J]. Ecological Entomology, 1955, 106(13): 455-540. |
[95] |
SCHMIDTRHAESA A, KULESSA J. Muscular architecture of Milnesium tardigradum and Hypsibius sp. (Eutardigrada, Tardigrada) with some data on Ramazottius oberhaeuseri[J]. Zoomorphology, 2007, 126(4): 265-281.
DOI URL |
[96] | HOYLE G, WILLIAMS M. The musculature of Peripatus and its innervation[J]. Philosophical Transactions of the Royal Society B, 1980, 288(1031): 481-510. |
[97] |
RAMSKÖLD L. Homologies in Cambrian Onychophora[J]. Lethaia, 1992, 25(4): 443-460.
DOI URL |
[98] | HAN J, LIU J N, ZHANG Z F, et al. Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of China[J]. Acta Palaeontologica Polonica, 2007, 52(2): 423-431. |
[99] | IVANTSOV A Y, WRONA R. Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia[J]. Acta Geologica Polonica, 2004, 54(1): 1-22. |
[100] |
HARVEY T H P, ORTEGA-HERNÁNDEZ J, LIN J, et al. Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China[J]. Acta Palaeontologica Polonica, 2011, 57(2): 423-436.
DOI URL |
[101] |
DZIK J. Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan[J]. Palaeontology, 2003, 46(1): 93-112.
DOI URL |
[102] | ROBSON E A. The cuticle of Peripatopsis Moseleyi[J]. Journal of Cell Science, 1964, 105: 281-299. |
[103] |
EHRLICH H, KEITH RIGBY J, BOTTING J, et al. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta[J]. Scientific Reports, 2013, 3(1): 1541-1543.
DOI URL |
[104] |
HOU X G, BERGSTROM J, JIE Y. Distinguishing anomalocaridids from arthropods and priapulids[J]. Geological Journal, 2006, 41(3/4): 259-269.
DOI URL |
[105] |
LIU J N, SHU D G, HAN J, et al. Comparative study of Cambrian lobopods Miraluolishania and Luolishania[J]. Chinese Science Bulletin, 2008, 53(1): 87-93.
DOI URL |
[106] | WILLMER P. Invertebrate Relationships[M]. Cambridge: Cambridge University Press, 1990: 400. |
[107] |
EDGECOMBE G D, LEGG D A. Origins and early evolution of arthropods[J]. Palaeontology, 2014, 57(3): 457-468.
DOI URL |
[108] | BUDD G E. Why are arthropods segmented?[J]. Evolution & Development, 2001, 3(5): 332-342. |
[1] | 王瑞敏, 沈冰. 条带状铁建造消失之谜:铁-硅互层机制研究进展与展望[J]. 地学前缘, 2024, 31(1): 111-126. |
[2] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[3] | 熊伟东, 肖安成, 魏国齐, 吴磊, 张春林, 王依平, 杨流昀, 王芊芊. 鄂尔多斯盆地南缘寒武纪同沉积伸展断裂系统及其成因机制分析[J]. 地学前缘, 2022, 29(6): 305-313. |
[4] | 樊奇, 樊太亮, 李清平, 张岩, 谷雨, 商雅欣. 塔里木北缘震旦纪—寒武纪转折期碳同位素漂移事件及成因机制[J]. 地学前缘, 2021, 28(5): 436-447. |
[5] | 王秉璋, 潘彤, 任海东, 王涛, 赵志逸, 封建平, 张金明. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘, 2021, 28(1): 318-333. |
[6] | 舒德干, 韩健. 澄江动物群的核心价值:动物界成型和人类基础器官诞生[J]. 地学前缘, 2020, 27(6): 1-27. |
[7] | 韩健, 郭俊锋, 欧强, 宋祖晨, 刘平, 郝文静, 孙洁, 王星. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78. |
[8] | 张志亮, 陈飞扬, 张志飞. 华南寒武纪碳酸盐岩中最早腕足动物的辐射、发育与分布[J]. 地学前缘, 2020, 27(6): 79-103. |
[9] | 张嘉玮, 陈建书, 吴滔, 叶太平, 陈明华, 代雅然, 邓小杰, 牟军. 湘黔桂新元古代拉伸纪晚期地层年代格架对比及关键地质事件初探[J]. 地学前缘, 2020, 27(4): 1-16. |
[10] | 胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150. |
[11] | 李三忠,索艳慧,刘博,刘永江,李玺瑶,赵淑娟,朱俊江,王光增,张国伟. 微板块构造理论:全球洋内与陆缘微地块研究的启示(附对该文的审稿意见)[J]. 地学前缘, 2018, 25(5): 323-356. |
[12] | 陆松年,郝国杰,相振群. 前寒武纪重大地质事件[J]. 地学前缘, 2016, 23(6): 140-155. |
[13] | 王伟,刘树文,白翔,郭荣荣. 前寒武纪地球动力学(Ⅷ):华北克拉通太古宙末期地壳生长方式[J]. 地学前缘, 2015, 22(6): 109-124. |
[14] | 李三忠,李玺瑶,戴黎明. 前寒武纪地球动力学(Ⅵ):华北克拉通形成[J]. 地学前缘, 2015, 22(6): 77-96. |
[15] | 李三忠,郭玲莉,戴黎明. 前寒武纪地球动力学(Ⅴ):板块构造起源[J]. 地学前缘, 2015, 22(6): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||