地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 67-78.DOI: 10.13745/j.esf.sf.2020.6.3
韩健1(), 郭俊锋2, 欧强3, 宋祖晨2, 刘平1, 郝文静1, 孙洁1, 王星4
收稿日期:
2020-03-27
修回日期:
2020-05-26
出版日期:
2020-11-02
发布日期:
2020-11-02
作者简介:
韩 健(1973—),男,研究员,主要从事动物门类起源以及寒武纪大爆发研究。E-mail: elihanj@nwu.edu.cn
基金资助:
HAN Jian1(), GUO Junfeng2, OU Qiang3, SONG Zuchen2, LIU Ping1, HAO Wenjing1, SUN Jie1, WANG Xing4
Received:
2020-03-27
Revised:
2020-05-26
Online:
2020-11-02
Published:
2020-11-02
摘要:
刺胞动物是华南寒武纪早期海洋生态系统的重要组成部分,针对这类化石的研究有助于深入了解寒武纪多幕式爆发事件。本文主要根据寒武纪早期扬子板块陕南宽川铺生物群、湖北岩家河生物群以及澄江生物群产出的刺胞动物,探讨刺胞动物在寒武纪早期的演化框架,取得了以下初步认识。截至目前,所发现的寒武纪早期刺胞动物绝大多数都属于水母超纲,珊瑚纲的化石记录在寒武系幸运阶、第二阶保存较为罕见。其中寒武系幸运阶刺胞动物的化石记录全部属于底栖类型,体型小,且具有多种类型的身体辐射对称形式,绝大多数类型可以确定属于直接发育。第二阶刺胞动物仍以底栖固着类型为主,体形增大,仅见两、四辐射对称形式;而寒武系第三阶刺胞动物仍有底栖固着类型,但游泳的水母开始出现,体型增大明显,代表水母冠群的出现,以及世代交替的复杂生命周期的正式建立。从幸运阶到第三阶刺胞动物体型明显增大,可能与海水氧气含量增加有关。在寒武纪大爆发的背景下,刺胞动物的分异度和丰度在寒武系幸运阶就已经达到顶峰,然后在第二阶、第三阶开始衰减,这种变化可能与两侧对称动物辐射演化有关。华南刺胞动物的化石记录表明,寒武纪大爆发并非纯粹的一幕式爆发,其中充斥着一系列生物群的替代甚至灭绝事件。
中图分类号:
韩健, 郭俊锋, 欧强, 宋祖晨, 刘平, 郝文静, 孙洁, 王星. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78.
HAN Jian, GUO Junfeng, OU Qiang, SONG Zuchen, LIU Ping, HAO Wenjing, SUN Jie, WANG Xing. Evolutionary framework of early Cambrian cnidarians from South China[J]. Earth Science Frontiers, 2020, 27(6): 67-78.
图2 华南寒武纪早期刺胞动物代表化石 a—Anabarites trisulcatus Missarzhevsky,in Voronova & Missarzhevsky,1969;标本号:ELISN15-42;b—Quadrapyrgites quadratacris Li et al.,2007;标本号:ELIXX35-175;c—Hexaconularia sichuanenisis He and Yang,1986;标本号:ELISN96-131;d—Carinachites spinatus Qian 1977;标本号:ELISN148-52;e—Feiyanella manica Han et al.,2017;标本号:ELISN141-14;f—Octapyrgites elongatus Guo et al.,2020;标本号:CUBar170-3;g,h—Septuconularia yanjiaheensis Guo et al.,2020;标本号:CUBar9-6;i,j,k—Yunnanoascus haikouensis Hu et al.,2007;整体(i)、触手(j)及复原图(k);标本号:YDKS-35。
Fig.2 Representative fossils of early Cambrian cnidarians from South China
图3 华南寒武系刺胞动物时代分布 ①Arthrochites emeishanensis Chen,1982;②Hexaconularia sichuanensis He & Yang,1986;③Septuconularia yanjiaheensis Guo et al.,2020;④Emeiconularis amplcanalis Liu et al.,2005;⑤Carinachites spinatus Qian,1997;⑥Carinachites tetrasulcatus Chen,1982;⑦Pentaconularia ningqiangensis Liu et al.,2011;⑧Quadrapyrgites quadratacris Li et al.,2007;⑨Octapyrgites elongatus Guo et al.,2020;⑩Unnamed forms Han et al.,2016; ?Qinscyphus necopinus Liu et al.,2017; ?Olivooides multisulcatus Qian,1997;Steiner et al.,2014; ?Olivooides mirabibis Yue in Xing et al.,1983;Steiner et al.,2014; ?Sinaster petalon Wang et al.,2017; ?Eolympia pediculata Han et al.,2010; ?Unnamed polypoid cnidarian Steiner et al.,2004; ?Anabarites trisulcatus Missarzhevsky in Rozanov et al.,1969; ?Anabarites isisticus Missarzhevsky,1974; ?A.trisulcatus var.obliquasulcatus Steiner et al.,2004; ?Yunnanoascus haikouensis Hu et al.,2007;Han et al.,2016; ?Sphenothallus sp.; ?Sphenothallus songlingensis; ?Sphenothallus kozaki; ?Byronia sp.; ?Nailiania transfromata Ou,2012; ?Archisaccophyllia kunmingensis Hou et al.,2005; ?Xianguangia sinica Chen & Erdtmann,1991;Ou et al.,2017。
Fig.3 Temporal distribution of Cambrian cnidarians in South China
[1] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
DOI URL |
[2] |
ZHURAVLEV A Y, WOOD R A. The two phases of the Cambrian Explosion[J]. Scientific Reports, 2018, 8(1): 16656.
DOI URL |
[3] |
SHU D. Cambrian explosion: birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
DOI URL |
[4] |
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[5] | 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1455-1490. |
[6] | PATERSON J R, EDGECOMBE G D, LEE M S Y. Trilobite evolutionary rates constrain the duration of the Cambrian explosion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4394-4399. |
[7] |
BOBROVSKIY I, HOPE J M, IVANTSOV A, et al. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals[J]. Science, 2018, 361(6408): 1246-1249.
DOI URL |
[8] |
CHEN Z, ZHOU C M, XIAO S H, et al. New Ediacara fossils preserved in marine limestone and their ecological implications[J]. Scientific Reports, 2015, 4: 4180.
DOI URL |
[9] | CHEN Z, CHEN X, ZHOU C M, et al. Late Ediacaran trackways produced bybilaterian animals with paired appendages[J]. Science Advances, 2018, 4(6): eaao6691. |
[10] |
IVANTSOV A, NAGOVITSYN A, ZAKREVSKAYA M. Traces of locomotion of Ediacaranmacroorganisms[J]. Geosciences, 2019, 9(9): 395.
DOI URL |
[11] |
EVANS S D, GEHLING J G, DROSER M L. Slime travelers: early evidence of animal mobility and feeding in an organic matworld[J]. Geobiology, 2019, 17(5): 490-509.
DOI URL |
[12] | YIN Z J, ZHU M Y, DAVIDSON E H, et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1453-E1460. |
[13] | YIN Z J, VARGAS K, CUNNINGHAM J, et al. The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology[J]. Current Biology, 2019, 29(24): 4307- 4314.e2. |
[14] |
ZHANG X L, SHU D G, HAN J, et al. Triggers for the Cambrian explosion: hypotheses andproblems[J]. Gondwana Research, 2014, 25(3): 896-909.
DOI URL |
[15] |
LI G X, STEINER M, ZHU X J, et al. Early Cambrian metazoan fossil record of South China: generic diversity and radiationpatterns[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 229-249.
DOI URL |
[16] |
KAYAL E, BENTLAGE B, SABRINA PANKEY M, et al. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits[J]. BMC Evolutionary Biology, 2018, 18(1): 68.
DOI URL |
[17] |
PARK E, HWANG D S, LEE J S, et al. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record[J]. Molecular Phylogenetics and Evolution, 2012, 62(1): 329-345.
DOI URL |
[18] |
STEINER M, LI G X, QIAN Y, et al. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance[J]. Geobios, 2004, 37(2): 259-275.
DOI URL |
[19] | DONG X P, CUNNINGHAM J A, BENGTSON S, et al. Embryos, polyps andmedusae of the early Cambrian scyphozoan Olivooides[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1757): 20130071. |
[20] |
DONG X P, VARGAS K, CUNNINGHAM J A, et al. Developmental biology of the early Cambrian cnidarian Olivooides[J]. Palaeontology, 2016, 59(3): 387-407.
DOI URL |
[21] |
LIU Y H, SHAO T Q, ZHANG H Q, et al. A new scyphozoan from the Cambrian Fortunian Stage of South China[J]. Palaeontology, 2017, 60(4): 511-518.
DOI URL |
[22] | HAN J, KUBOTA S, LI G X, et al. Early Cambrian pentamerous cubozoan embryos from South China[J]. PLoS One, 2013, 8(8): e70741. |
[23] |
DZIK J, BALI SKI A, SUN Y L. The origin of tetraradial symmetry in cnidarians[J]. Lethaia, 2017, 50(2): 306-321.
DOI URL |
[24] | HAN J, LI G X, SHIN K, et al. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides[J]. Acta Geologica Sinica(English Edition), 2016, 90(1): 38-65. |
[25] |
HAN J, KUBOTA S, LI G X, et al. Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China[J]. Gondwana Research, 2016, 31: 150-163.
DOI URL |
[26] |
WANG X, HAN J, VANNIER J, et al. Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China[J]. Palaeontology, 2017, 60(6): 853-867.
DOI URL |
[27] |
XIAN X F, ZHANG H Q, LIU Y H, et al. Diverse radial symmetry among the Cambrian Fortunian fossil embryos from northern Sichuan and southern Shaanxi Provinces, South China[J]. Palaeoworld, 2019, 28(3): 225-233.
DOI URL |
[28] |
HAN J, LI G X, WANG X, et al. Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)[J]. Journal of Paleontology, 2018, 92(1): 3-13.
DOI URL |
[29] | HAN J, KUBOTA S, UCHIDA H O, et al. Tiny sea anemone from the Lower Cambrian of China[J]. PLoS One, 2010, 5(10): e13276. |
[30] |
BERRILL N J. Developmental Analysis of scyphomedusae[J]. Biological Reviews, 1949, 24(4): 393-409.
PMID |
[31] |
BENGTSON S, ZHAO Y. Fossilized metazoan embryos from the earliest Cambrian[J]. Science, 1997, 277(5332): 1645-1648.
DOI URL |
[32] | DUAN B C, DONG X P, PORRAS L, et al. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1869): 20172188. |
[33] |
HAN J, CAI Y P, SCHIFFBAUER J D, et al. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China[J]. Geological Magazine, 2017, 154(6): 1294-1305.
DOI URL |
[34] |
CAI Y P, XIAO S H, LI G X, et al. Diverse biomineralizing animals in the terminal Ediacaran period herald the Cambrian explosion[J]. Geology, 2019, 47(4): 380-384.
DOI URL |
[35] |
YANG B, STEINER M, ZHU M Y, et al. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution[J]. Precambrian Research, 2016, 285: 202-215.
DOI URL |
[36] |
ZHU M, ZHURAVLEV A Y, WOOD R A, et al. A deep root for the Cambrian explosion: implications of new bio-and chemostratigraphy from the Siberian Platform[J]. Geology, 2017, 45(5): 459-462.
DOI URL |
[37] |
GUO J F, LI Y, LI G X. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[38] |
GUO J F, HAN J, ITEN H V, et al. A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(1): 45-55.
DOI URL |
[39] |
GUO J F, HAN J, VAN ITEN H, et al. A new tetraradial olivooid (Medusozoa) from the Lower Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(3): 457-466.
DOI URL |
[40] |
LI G X, ZHU M Y, VAN ITEN H, et al. Occurrence of the earliest known Sphenothallus Hall in the Lower Cambrian of southern Shaanxi Province, China[J]. Geobios, 2004, 37(2): 229-237.
DOI URL |
[41] |
CHANG S, CLAUSEN S, ZHANG L, et al. New probable cnidarian fossils from the Lower Cambrian of the Three Gorges area, South China, and their ecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 150-166.
DOI URL |
[42] |
HOU X G, STANLEY G D, ZHAO J, et al. Cambrian anemones with preserved soft tissue from the Chengjiang biota, China[J]. Lethaia, 2005, 38(3): 193-203.
DOI URL |
[43] | CHEN J Y, ERDTMANN B D. Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metazoan life[C]//SIMONETTA A M, MORRIS S C. The early evolution of metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press, 1991: 57-76. |
[44] | OU Q, HAN J, ZHANG Z F, et al. Three Cambrian fossils assembled into an extinct body plan of cnidarianaffinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8835-8840. |
[45] | ZHAO Y, VINTHER J, PARRY L A, et al. Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly bodyplan[J]. Current Biology, 2019, 29(7): 1112-1125.e2. |
[46] | 欧强. 早期动物树部分关键支系及节点的构建[D]. 北京: 中国地质大学(北京), 2012. |
[47] |
HAN J, HU S X, CARTWRIGHT P, et al. The earliest pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 166-173.
DOI URL |
[48] | Hou X G, Adridge R J, Bergström J, et al. The Cambrian fossils of Chengjiang, China: the flowering of early animal life (Second Edition)[M]. Oxford: Blackwell Science, 2017. |
[49] |
HICKS M. A new genus of Early Cambrian coral in Esmeralda County, southwestern Nevada[J]. Journal of Paleontology, 2006, 80(4): 609-615.
DOI URL |
[50] |
PEEL J S. A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2-3) of Laurentia[J]. Journal of Paleontology, 2017, 91(5): 871-882.
DOI URL |
[51] |
PARK TY, WOO J, LEE D J, et al. A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution[J]. Nature Communications, 2011, 2: 442.
DOI URL |
[52] |
SCRUTTON C T. The Palaeozoic corals, I: origins and relationships[J]. Proceedings of the Yorkshire Geological Society, 1997, 51(3): 177-208.
DOI URL |
[53] |
SCRUTTON C. Palaeozoic corals: their evolution and palaeoecology[J]. Geology Today, 1999, 15(5): 184-193.
DOI URL |
[54] |
DRAKE J L, MASS T, STOLARSKI J, et al. How corals made rocks through the ages[J]. Global Change Biology, 2020, 26(1): 31-53.
DOI URL |
[55] |
STANLEY G D. The evolution of modern corals and their early history[J]. Earth-Science Reviews, 2003, 60(3/4): 195-225.
DOI URL |
[56] | NOVACK-GOTTSHALL P M, LANIER M A. Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5430-5434. |
[57] |
WILLIAMS M, VANNIER J, CORBARI L, et al. Oxygen as a driver of early arthropod micro-benthos evolution[J]. PLoS One, 2011, 6(12): e28183.
DOI URL |
[58] |
HONE D, BENTON M. The evolution of large size: how does Cope’s Rule work?[J]. Trends in Ecology & Evolution, 2005, 20(1): 4-6.
DOI URL |
[59] | PAYNE J L, MCCLAIN C R, BOYER A G, et al. The evolutionary consequences of oxygenic photosynjournal: a body size perspective[J]. Photosynjournal Research, 2011, 107(1): 37-57. |
[60] | GAD G. A parthenogenetic, simplified adult in the life cycle of Pliciloricus pedicularis sp. n.(Loricifera) from the deep sea of the Angola Basin (Atlantic)[J]. Organisms Diversity & Evolution, 2005, 5: 77-103. |
[61] |
BOADEN P J S. Meiofauna and the origins of the metazoa[J]. Zoological Journal of the Linnean Society, 1989, 96(3): 217-227.
DOI URL |
[62] |
STRATHMANN RR. Egg size, larval development, and juvenile size in benthic marine invertebrates[J]. The American Naturalist, 1977, 111(978): 373-376.
DOI URL |
[63] |
CARON J B, VANNIER J. Waptia and the diversification of brood care in early arthropods[J]. Current Biology, 2016, 26(1): 69-74.
DOI URL |
[64] |
DUAN Y H, HAN J, FU D J, et al. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 983-990.
DOI URL |
[65] | OU Q, VANNIER J, YANG X F, et al. Evolutionary trade-off in reproduction of Cambrian arthropods[J]. Science Advances, 2020, 6(18): eaaz3376. |
[66] |
KAYAL E, ROURE B, PHILIPPE H, et al. Cnidarian phylogenetic relationships as revealed by mitogenomics[J]. BMC Evolutionary Biology, 2009, 13(1): 5.
DOI URL |
[67] |
COLLINS A G, SCHUCHERT P, MARQUES A C, et al. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models[J]. Systematic Biology, 2006, 55(1): 97-115.
DOI URL |
[68] |
MARQUES A C, COLLINS A G. Cladistic analysis of Medusozoa and cnidarianevolution[J]. Invertebrate Biology, 2005, 123(1): 23-42.
DOI URL |
[69] |
VAN ITEN H, MARQUES A C, DE MORAES LEME J, et al. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history[J]. Palaeontology, 2014, 57(4): 677-690.
DOI URL |
[70] |
COLLINS A G. Phylogeny of Medusozoa and the evolution of cnidarian lifecycles[J]. Journal of Evolutionary Biology, 2002, 15(3): 418-432.
DOI URL |
[71] | KHALTURIN K, SHINZATO C, KHALTURINA M, et al. Medusozoan genomes inform the evolution of the jellyfish bodyplan[J]. Nature Ecology & Evolution, 2019, 3(5): 811-822. |
[72] | ARAI M N. A functional biology of Scyphozoa[M]. London: Chapman & Hall, 1997: 316. |
[73] | VAN ITEN H, LEME J M PACHECO M L A F, et al. Origin and early diversification of phylum Cnidaria: key macrofossils from the Ediacaran System of North and South America[M]//GOFFREDO S, DUBINSKY Z.The Cnidaria, past, present and future. Cham: Springer International Publishing, 2016: 31-40. |
[74] |
JARMS G, MORANDINI A, DA SILVEIRA F. Cultivation of polyps andmedusae of Coronatae (Cnidaria, Scyphozoa) with a brief review of important characters[J]. Helgoland Marine Research, 2002, 56(3): 203-210.
DOI URL |
[75] |
WERNER B, CUTRESS C E, STUDEBAKER J P. Life cycle of Tripedalia cystophora Conant (Cubomedusae)[J]. Nature, 1971, 232(5312): 582-583.
DOI URL |
[76] |
UNDERWOODA H, STRAEHLER-POHL I, CARRETTE T J, et al. Early life history and metamorphosis in Malo maxima Gershwin, 2005 (Carukiidae, Cubozoa, Cnidaria)[J]. Plankton and Benthos Research, 2018, 13(4): 143-153.
DOI URL |
[77] | STRAEHLER-POHL I, JARMS G. Morphology and life cycle of Carybdea morandinii, sp. nov.(Cnidaria), a cubozoan with zooxanthellae and peculiar polyp anatomy[J]. Zootaxa, 2011, 2755(1): 36. |
[78] |
LANKESTER E R. Das system dermedusen; erster theil einer monographie der medusen[J]. Nature, 1880, 21: 413-415.
DOI URL |
[79] |
GERSHWIN L A. Clonal and population variation in jellyfish symmetry[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(6): 993-1000.
DOI URL |
[1] | 徐长贵, 高阳东, 刘军, 彭光荣, 陈兆明, 李洪博, 蔡俊杰, 马庆佑. 南海陆缘“拆离—核杂岩型”盆地发现与油气地质条件:以南海北部开平凹陷为例[J]. 地学前缘, 2024, 31(6): 381-404. |
[2] | 何建华, 曹红秀, 邓虎成, 印长海, 朱彦平, 李厂, 李勇, 尹帅. 川东北营山-平昌地区凉高山组页岩天然裂缝发育特征及其形成演化模式研究[J]. 地学前缘, 2024, 31(5): 17-34. |
[3] | 窦立荣, 黄文松, 孔祥文, 汪萍, 赵子斌. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[4] | 刘金萍, 王改云, 简晓玲, 朱传庆, 胡小强, 袁晓蔷, 王超. 北黄海东部次盆地构造热机制与成烃效应[J]. 地学前缘, 2024, 31(4): 206-218. |
[5] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[6] | 陈飞, 曾维特, 仝长亮, 张从伟, 付标, 陈旸, 陈波. 琼州海峡第四纪层序格架及其沉积演化[J]. 地学前缘, 2024, 31(3): 100-112. |
[7] | 何建华, 李勇, 邓虎成, 王园园, 马若龙, 唐建明. 川东南永川地区龙马溪组页岩储层构造裂缝特征及期次演化研究[J]. 地学前缘, 2024, 31(3): 298-311. |
[8] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[9] | 何辉, 穆文平, 张晓, 宋煜冰, 吕远洋, 武雄, 叶宝莹, 白中科. 锡林郭勒盟大型露天煤矿区地质环境时空演化评价[J]. 地学前缘, 2024, 31(3): 443-457. |
[10] | 王瑞敏, 沈冰. 条带状铁建造消失之谜:铁-硅互层机制研究进展与展望[J]. 地学前缘, 2024, 31(1): 111-126. |
[11] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[12] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[13] | 庞宏, 庞雄奇, 吴松, 陈君青, 胡涛, 姜福杰, 陈冬霞. 塔北及周缘地区奥陶系碳酸盐岩烃源岩生-残-排烃特征[J]. 地学前缘, 2023, 30(6): 213-231. |
[14] | 高键, 李慧莉, 何治亮, 蔡勋育, 李双建, 刘光祥, 袁玉松, 林娟华, 李智. 川东南平桥地区寒武系洗象池群多元复合成藏过程及其勘探启示[J]. 地学前缘, 2023, 30(6): 263-276. |
[15] | 李毕松, 金民东, 朱祥, 代林呈, 杨毅. 川东北地区灯四段储层成岩作用及孔隙演化[J]. 地学前缘, 2023, 30(6): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||