地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 79-103.DOI: 10.13745/j.esf.sf.2020.6.4
收稿日期:
2020-03-23
修回日期:
2020-05-27
出版日期:
2020-11-02
发布日期:
2020-11-02
通信作者:
张志飞
作者简介:
张志亮(1988—),男,博士,主要从事寒武纪早期壳体化石形态、结构与发育研究。E-mail:zhiliang. zhang@mq.edu.au
基金资助:
ZHANG Zhiliang1,2(), CHEN Feiyang1,2, ZHANG Zhifei1,*(
)
Received:
2020-03-23
Revised:
2020-05-27
Online:
2020-11-02
Published:
2020-11-02
Contact:
ZHANG Zhifei
摘要:
腕足动物是寒武纪冠轮动物分支的重要类群,在寒武纪大爆发期间海洋底栖动物群落结构构建中发挥着重要作用。研究表明华南最早的腕足动物出现在寒武系第二统。通过大量酸蚀处理和系统分析,发现华南寒武纪第二世碳酸盐岩相中赋存的腕足动物可分为8属12种和3个未定属种,都属于磷酸钙质舌形贝型,揭示了寒武纪早期磷酸钙质壳腕足动物的多样性及其形态差异。通过全球对比,力求探索寒武纪最早腕足动物的起源、多样性、分布与辐射。通过个体发育研究,揭示了异时发育在乳孔贝形态多样性中发挥的重要作用,同时表明寒武纪舌形贝型腕足动物发育中普遍存在滤食型浮游幼虫和变态发育的过程。因此变态发育的浮游幼虫可能是腕足动物的祖先特征。这与现代舌形贝明显不同,现代舌形贝的浮游幼虫为次级幼虫,演变为直接发育。此外,对比全球不同大陆腕足动物的首现,认为舌形贝型亚门腕足动物可能在寒武纪第二世初起源于东冈瓦纳与华南板块,随后开始向全球扩散。对寒武纪早期腕足动物多样性、个体发育与生物地层的深入研究,有助于增进对关键动物门类的早期起源与系统演化的认识,同时也将推动全球和区域寒武纪生物地层的划分与对比。
中图分类号:
张志亮, 陈飞扬, 张志飞. 华南寒武纪碳酸盐岩中最早腕足动物的辐射、发育与分布[J]. 地学前缘, 2020, 27(6): 79-103.
ZHANG Zhiliang, CHEN Feiyang, ZHANG Zhifei. The earliest phosphatic-shelled brachiopods from the carbonates of South China: their diversification, ontogeny and distribution[J]. Earth Science Frontiers, 2020, 27(6): 79-103.
图1 寒武纪生命大爆发期间基础动物、原口动物和后口动物依次成型(据文献[5])
Fig.1 Successive formation of basal metazoans, protostomes and deuterostomes during the Cambrian explosion.Adapted from [5].
图2 华南寒武纪第二世古地理及化石产地 a—华南寒武纪第二世古地理简图[10],标注化石产地;b—湖北宜昌艾家河剖面岩家河组(YJH)-水井沱组(SJT)界线,箭头标注水井沱组底部钙质结核;c—陕南镇巴小洋坝剖面灯影组(DY)-西蒿坪段(XHP)-水井沱组(SJT)界线,箭头标注腕足动物Eoobolus incipiens的最低层位。
Fig.2 Palaeogeography and fossil localities of the Cambrian Series 2 in South China
腕足动物 | 目 | 超科 | 科 | 属种Genus/species | 文献 |
---|---|---|---|---|---|
寒武纪 第二世 浅水 碳酸盐岩 Cambrian Epoch 2 Carbonate sediments | Lingulida | Linguloidea | Obolidae | Palaeobolus? liantuoensis | [ |
Kyrshabaktella? sp. | [ | ||||
Spinobolus popovi | [ | ||||
Eoobolidae | Eoobolus incipiens | [ | |||
Eoobolus? shaanxiensis | [ | ||||
Eoobolussp. | [ | ||||
Eoobolidae gen. et sp. indet. | [ | ||||
Lingulellotretidae | Lingulellotreta yuanshanensis | [ | |||
Lingulellotreta ergalievi | [ | ||||
Acrotheloidea | Botsfordiidae | Botsfordia minuta | [ | ||
Botsfordiidae gen. et sp. indet. A | [ | ||||
Botsfordiidae gen. et sp. indet. B | [ | ||||
Acrotretida | Acrotretoidea | Acrotretidae | Eohadrotreta zhenbaensis | [ | |
Palaeotreta zhujiahensis | [ | ||||
Palaeotreta shannanensis | [ |
表1 华南寒武系第二统磷酸钙质壳腕足动物属种分类(据文献[17]略做修改)
Table 1 Phosphatic-shelled brachiopod taxa from Cambrian Series 2 in South China. Modified after [17].
腕足动物 | 目 | 超科 | 科 | 属种Genus/species | 文献 |
---|---|---|---|---|---|
寒武纪 第二世 浅水 碳酸盐岩 Cambrian Epoch 2 Carbonate sediments | Lingulida | Linguloidea | Obolidae | Palaeobolus? liantuoensis | [ |
Kyrshabaktella? sp. | [ | ||||
Spinobolus popovi | [ | ||||
Eoobolidae | Eoobolus incipiens | [ | |||
Eoobolus? shaanxiensis | [ | ||||
Eoobolussp. | [ | ||||
Eoobolidae gen. et sp. indet. | [ | ||||
Lingulellotretidae | Lingulellotreta yuanshanensis | [ | |||
Lingulellotreta ergalievi | [ | ||||
Acrotheloidea | Botsfordiidae | Botsfordia minuta | [ | ||
Botsfordiidae gen. et sp. indet. A | [ | ||||
Botsfordiidae gen. et sp. indet. B | [ | ||||
Acrotretida | Acrotretoidea | Acrotretidae | Eohadrotreta zhenbaensis | [ | |
Palaeotreta zhujiahensis | [ | ||||
Palaeotreta shannanensis | [ |
图3 华南寒武纪第二世磷酸盐化壳体化石 a-p—峡东水井沱组;a—三叶虫Tsunyidiscus actus(感谢代韬提供照片);b-e—多节类三叶虫ptychopariids,AJH S05 AO-03,AJH S05 AO-06,AJH S05 Q-03,AJH S05 AO-05;f,g—微网虫Microdictyon sp.,AJH S05 BE04;h,i—高肌虫Houlongdongella sp.,AJH 8-2-3 B-13;j—棘皮动物骨板,AJH S05 G-20;k-n—软舌螺Paramicrocornus zhenbaensis,AJH 8-2-3 CM-07;o,p—似软舌螺Hyolithellus,AJH S05 BH-12;q—岩家河组原牙形刺Protohertzina,YJH S01C V-42;r-u—峡东水井沱组;r—似软舌螺Torellella,AJH S05 Q-25;s—海绵骨针,AJH S05 P-41;t,u—古杯化石Robustocyathellus sp.,AJH 8-2-3 BJ-12;v,w—陕南西蒿坪段寒武钉Cambroclavus fangxianensis,XYB 5 AN-05;x—陕南水井沱组软舌螺口盖Paramicrocornus zhenbaensis;y,z,ab—陕南水井沱组三叶虫Hupeidiscus orientalis,XYB S4-3 AN-15,XYB S4-3 AN-13。
Fig.3 Phosphatised shelly fossils from Cambrian Series 2 in South China
图4 寒武纪第二世澄江化石库软躯体保存腕足动物化石 a,b—Diandongia pista,ELI-BD 0082,ELI-BD 0056;c,d—Heliomedusa orienta,ELI-BH 0011,ELI-BH 0036;e,f—Lingulellotreta yuanshanensis ELI-BL409b,ELI-425;g,h—Eoglossa chengjiangensis ELI-BC 0118,ELI-BC 035;i,j—Xianshanella haikouensis ELI-BX 002A,ELI-BX003A;k,l—Kuangshanotreta malungensis ELI-B CLP K 015,ELI-CLP K 023A。
Fig.4 Soft bodied preserved brachiopods from the Cambrian Epoch 2 Chengjiang Lagerstätte
图5 陕南灯影组西蒿坪段始圆货贝Eoobolus incipiens 形态及结构 a-d—腹壳,箭头标示微弱发育的顶肌痕,ELI S3 AM-04;e,f—背壳ELI XYB S3 AM-04;g,h—较大的背壳发育倒三角形中脊,ELI S3 AK-09,ELI S3 AK-08;i—变态壳的圆坑状结构,ELI XYB S3 AM-02;j—后变态壳发育瘤点纹饰,ELI XYB S3 AM-03;k—放大显示瘤点构造,ELI XYB S3 AT 013。
Fig.5 Morphology and structure of Eoobolus incipiens from the Xihaoping Member, Dengying Formation of southern Shaanxi
图6 滇东地区梅树村剖面黑林铺组玉案山段底部磷酸钙质壳腕足动物Botsfordiidae gen.et sp.indet.B(博茨傅徒贝科未定属种) a,b—酸蚀处理获得的博茨傅徒贝破碎壳体,ELI-MSC-2-01 V-80;b—图a中的瘤状壳体纹饰的放大显示;c—博茨傅徒贝的瘤点纹饰,直径约30 μm,ELI-MSC-2-01 V-77;d—纵切面显示壳体结构,可见微弱的棒状结构,ELI-MSC-3-02 V-92。
Fig.6 Botsfordiidae gen. et sp. indet. B, a representative of phosphatic-shelled brachiopod from the bottom of the Yu’anshan Member, Heilinpu Formation of the Meishucun section in eastern Yunnan
图7 华南寒武纪第二世磷酸钙质壳腕足动物的形态与结构多样性 a—Eohadrotreta zhenbaensis,ELI-AJH S05 I143;b—Palaeobolus?liantuoensi,ELI-XYB S4-3 BQ-10;c—Botsfordia minuta ELI-XYB S4-2 BO-08;d—Eohadrotreta zhenbaensis,ELI S05 E-85;e—Spinobolus popovi,AEI-AJH S05 CA-04;f—Botsfordia minuta ELI-XYB S4-3 CK-19;g—Eohadrotreta zhenbaensis,ELI-AJH S05 D-94;h—Spinobolus popovi,ELI-AJH S05 64;i—Botsfordia minuta,ELI-XYB 13 CK-07;j—Eoobolus incipiens,ELI-XYB S3 AM-06;k—Lingulellotreta yuanshanensis,ELI-XYB S5-4 CH-03;l—Botsfordia minuta,ELI-XYB 13 CK-04;m—Eohadrotreta zhenbaensis,ELI-AJH 8-2-3 AC-11。
Fig.7 Morphology and structural diversity of phosphatic-shelled brachiopods from Cambrian Epoch 2 in South China
图8 寒武系水井沱组Eohadrotreta zhenbaensis的3个个体发育阶段(据文献[57]) a,b—肉茎孔形成阶段T1,ELI-AJH 8-2-1 AD2-15;c,d—肉茎孔封闭阶段T2,ELI-AJH 8-2-1 AE-03;e—交互沟伸长阶段T3,ELI-AJH 8-2-3 AD2-08。
Fig.8 Three ontogenetic stages of Eohadrotreta zhenbaensis from the Cambrian Shuijingtuo Formation. Adapted from [57].
图9 磷酸钙质壳腕足动物的生命周期,显示重要的最早期发育阶段(据文献[16]略作修改) a—现代舌形贝科Lingula,示次级幼虫的生命周期;b—寒武纪早期乳孔贝科Eohadrotreta原始幼虫,示变态发育完成于固着后不久。bs—幼年壳;es—胚胎期形成壳(embryoic shell);lse—幼虫刚毛;mas—成年壳;ms—变态壳(幼壳);mse—外套膜边缘刚毛;ns—少年壳;pr—胎壳;te—触手。
Fig.9 Life cycle of phosphatic-shelled brachiopods, demonstrating important earliest ontogenetic stage. Modified after [16].
图10 滇东、陕南与峡东地区寒武纪第二世的地层对比(据文献[10]略作修改)
Fig.10 Stratigraphic correlation of Cambrian Series 2 in eastern Yunnan Province (a), southern Shaanxi Province (b) and eastern Yangtze Gorges (c). Modified after [10].
[1] |
SHU D, ISOZAKI Y, ZHANG X, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[2] |
CHEN F, ZHANG Z, BETTS M J, et al. First report on Guanshan Biota (Cambrian Stage 4) at the stratotype area of Wulongqing Formation in Malong County, Eastern Yunnan, China[J]. Geoscience Frontiers, 2019, 10(4): 1459-1476.
DOI URL |
[3] |
HARPER D A T, HAMMARLUND E U, TOPPER T P, et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion[J]. Journal of the Geological Society, 2019, 176(6): 1023-1037.
DOI URL |
[4] |
FU D, TONG G, DAI T, et al. The Qingjiang biota: a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China[J]. Science, 2019, 363(6433): 1338-1342.
DOI URL |
[5] | 张志飞, 陈飞扬. 寒武纪大爆发—早期后生动物辐射之谜: 序言[J]. 古生物学报, 2017(4): 409-414. |
[6] |
BASSETT M G, POPOV L E, HOLMER L E. Organophosphatic brachiopods: patterns of biodiversification and extinction in the Early Palaeozoic[J]. Geobios, 1999, 32(2): 145-163.
DOI URL |
[7] |
CARLSON S J. The evolution of Brachiopoda[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 409-438.
DOI URL |
[8] | 张志飞, 张志亮, 李国祥. 寒武纪腕足动物起源: 假说, 问题与展望[J]. 古生物学报, 2016, 55(4): 403-423. |
[9] |
BUDD G E, JACKSON I S. Ecological innovations in the Cambrian and the origins of the crown group phyla[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1685): 20150287.
DOI URL |
[10] |
ZHANG Z F, ZHANG Z L, LI G X, et al. The Cambrian brachiopod fauna from the first-trilobite age Shuijingtuo Formation in the Three Gorges area of China[J]. Palaeoworld, 2016, 25(3): 333-355.
DOI URL |
[11] | 张志亮, 张志飞, HOLMER L E. 华南峡东地区最早的乳孔贝类腕足动物壳体超微结构和发育研究[J]. 古生物学报, 2017, 36(4): 483-503. |
[12] |
SEPKOSKI J J. A kinetic model of Phanerozoic taxonomic diversity. Ⅲ. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267.
DOI URL |
[13] | WILLIAMS A, BRUNTON C H C, MACKINNO D I. Morphology[M]//KAESLER R L. Treatise on invertebrate paleontology, Part H (Brachiopoda) (Revised). Boulder: University Press of Kansas, 2000: 321-440. |
[14] |
HARPER D A, POPOV L E, HOLMER L E. Brachiopods: origin and early history[J]. Palaeontology, 2017, 60(5): 609-631.
DOI URL |
[15] | GIRIBET G. New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics[J]. Organisms Diversity & Evolution, 2016, 16(2): 419-426. |
[16] |
ZHANG Z L, POPOV L E, HOLMER L E, et al. Earliest ontogeny of early Cambrian acrotretoid brachiopods: first evidence for metamorphosis and its implications[J]. BMC Evolutionary Biology, 2018, 18(1): 42.
DOI URL |
[17] | 张志亮. 华南寒武纪早期磷酸钙质壳腕足动物研究[D]. 西安: 西北大学, 2018. |
[18] |
MALOOF A C, PORTER S M, MOORE J L, et al. The earliest Cambrian record of animals and ocean geochemical change[J]. GSA bulletin, 2010, 122(11/12): 1731-1774.
DOI URL |
[19] |
LANDING E, GEYER G, BRASIER M D, et al. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy: overcoming deficiencies of the first appearance datum (FAD) concept[J]. Earth-Science Reviews, 2013, 123: 133-172.
DOI URL |
[20] |
BETTS M J, PATERSON J R, JACQUET S M, et al. Early Cambrian chronostratigraphy and geochronology of South Australia[J]. Earth-Science Reviews, 2018, 185: 498-543.
DOI URL |
[21] |
ZHANG X, AHLBERG P, BABCOCK L E, et al. Challenges in defining the base of Cambrian Series 2 and Stage 3[J]. Earth-Science Reviews, 2017, 172: 124-139.
DOI URL |
[22] |
GEYER G. A comprehensive Cambrian correlation chart[J]. Episodes, 2020, 42(4): 1-12.
DOI URL |
[23] |
STEINER M, LI G, QIAN Y, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1): 67-99.
DOI URL |
[24] |
BETTS M J, PATERSON J R, JAGO J B, et al. A new lower Cambrian shelly fossil biostratigraphy for South Australia[J]. Gondwana Research, 2016, 36: 176-208.
DOI URL |
[25] |
BETTS M J, PATERSON J R, JAGO J B, et al. Global correlation of the early Cambrian of South Australia: shelly fauna of the Dailyatia odyssei Zone[J]. Gondwana Research, 2017, 46: 240-279.
DOI URL |
[26] |
YANG B, STEINER M, KEUPP H. Early Cambrian palaeobiogeography of the Zhenba-Fangxian Block (South China): independent terrane or part of the Yangtze Platform?[J]. Gondwana Research, 2015, 28(4): 1543-1565.
DOI URL |
[27] |
JAGO J B, GEHLING J G, PATERSON J R, et al. Cambrian stratigraphy and biostratigraphy of the Flinders Ranges and the north coast of Kangaroo Island, South Australia[J]. Episodes, 2012, 35(1): 247-255.
DOI URL |
[28] |
USHATINSKAYA G T, KOROVNIKOV I V. Revision of the Early-Middle Cambrian Lingulida (Brachiopoda) from the Siberian Platform[J]. Paleontol J, 2014, 48(1): 26-40.
DOI URL |
[29] | ZHANG Z L, GHOBADI POUR M, POPOV L E, et al. The oldest Cambrian trilobite-brachiopod association in China[J]. Gondwana Research, 2020. https://doi.org/10.1016/j.gr.2020.08.009. |
[30] |
ZHANG Z L, HOLMER L E, CHEN F, et al. Ontogeny and evolutionary significance of a new acrotretide brachiopod genus from Cambrian Series 2 of South China[J]. Journal of Systematic Palaeontology, 2020, 18(19): 1569-1588.
DOI URL |
[31] |
LI G, HOLMER L E. Early Cambrian lingulate brachiopods from the Shaanxi Province, China[J]. GFF, 2004, 126(2): 193-211.
DOI URL |
[32] |
ZHANG Z F, HOLMER L E, LIANG Y, et al. The oldest ‘Lingulellotreta’(Lingulata, Brachiopoda) from China and its phylogenetic significance: integrating new material from the Cambrian Stage 3-4 Lagerstätten in eastern Yunnan, South China[J]. Journal of Systematic Palaeontology, 2020, 18(11): 1-29.
DOI URL |
[33] | 冯增昭. 中国寒武纪和奥陶纪岩相古地理[M]. 北京: 石油工业出版社, 2004. |
[34] |
GUO J, LI Y, LI G. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[35] | 罗惠麟, 蒋志文, 武希彻. 中国云南晋宁梅树村震旦系—寒武系界线层型剖面[M]. 昆明: 云南人民出版社, 1984. |
[36] | STEINER M, ZHU M, WEBER B, et al. The Lower Cambrian of eastern Yunnan: trilobite-based biostratigraphy and related faunas[J]. Acta Palaeontologica Sinica, 2001, 40(Supp): 63-79. |
[37] |
ZHANG Z, ROBSON S P, EMIG C, et al. Early Cambrian radiation of brachiopods: a perspective from South China[J]. Gondwana Research, 2008, 14(1): 241-254.
DOI URL |
[38] | ZHANG Z F, LI G X, HOLMER L E, et al. An early Cambrian agglutinated tubular lophophorate with brachiopod characters[J]. Scientific Reports, 2014, 4(1): 1-8. |
[39] | ZHANG Z, HOLMER L E. Exceptionally preserved brachiopods from the Chengjiang Lagerstatte (Yunnan, China): perspectives on the Cambriane explosion of metazoans[J]. Science Foundation in China, 2013, 21(2): 66-80. |
[40] |
BALTHASAR U. The brachiopod Eoobolus from the Early Cambrian Mural Formation (Canadian Rocky Mountains)[J]. Palaeontologische Zeitschrift, 2009, 83(3): 407-418.
DOI URL |
[41] | HOLMER L E, POPOV L E. Class Lingulata[M]//KAESLER R L. Treatise on invertebrate paleontology, Part H (Brachiopoda). Boulder: University Press of Kansas, 2000: 30-146. |
[42] |
ZHANG Z L, ZHANG Z, WANG H. Epithelial cell moulds preserved in the earliest acrotretid brachiopods from the Cambrian (Series 2) of the Three Gorges area, China[J]. GFF, 2016, 138(4): 455-466.
DOI URL |
[43] |
FENG W, KOBAYASHI I. Microstructure of the linguliformean brachiopod Linnarssonia from the Lower Cambrian of Sichuan, China[J]. Lethaia, 2004, 37(3): 263-270.
DOI URL |
[44] |
LI G, XIAO S. Tannuolina and Micrina (Tannuolinidae) from the lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction[J]. Journal of Paleontology, 2004, 78(5): 900-913.
DOI URL |
[45] |
HOLMER L E, SKOVSTED C B, LARSSON C, et al. First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance[J]. Palaeontology, 2011, 54(2): 235-239.
DOI URL |
[46] |
SKOVSTED C B, BROCK G A, TOPPER T P, et al. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia[J]. Palaeontology, 2011, 54(2): 253-286.
DOI URL |
[47] |
LARSSON C M, SKOVSTED C B, BROCK G A, et al. Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod[J]. Palaeontology, 2014, 57(2): 417-446.
DOI URL |
[48] | KOUCHINSKY A, BENGTSON S, LANDING E, et al. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia[J]. Acta Palaeontologica Polonica, 2017, 62(2): 311-440. |
[49] |
LI G, ZHANG Z, HUA H, et al. Occurrence of the Enigmatic Bivalved Fossil Apistoconcha in the Lower Cambrian of Southeast Shaanxi, North China Platform[J]. Journal of Paleontology, 2014, 88(2): 359-366.
DOI URL |
[50] | HOLMER L E, POPOV L, STRENG M. Organophosphatic stem group brachiopods: implications for the phylogeny of the subphylum Linguliformea[J]. Fossils and Strata, 2008, 54: 3-11. |
[51] |
SKOVSTED C B, USHATINSKAYA G, HOLMER L E, et al. Taxonomy, morphology, shell structure and early ontogeny of Pelmanotreta nom. nov. from the lower Cambrian of Siberia[J]. GFF, 2015, 137(1): 1-8.
DOI URL |
[52] | WILLIAMS A, CUSACK M. Chemico-structural Diversity of the Brachiopod Shell[M]//KAESLER R. Treatise on invertebrate paleontology, Part H. Boulder: University Press of Kansas, 2007: 2396-2521. |
[53] | POPOV L E, BASSETT M G, HOLMER L E, et al. Earliest ontogeny of Early Palaeozoic Craniiformea: implications for brachiopod phylogeny[J]. Lethaia, 2010, 43(3): 323-333. |
[54] |
POPOV L E, BASSETT M G, HOLMER L E. Earliest ontogeny of Early Palaeozoic Craniiformea: compelling evidence for lecithotrophy[J]. Lethaia, 2012, 45(4): 566-573.
DOI URL |
[55] |
USHATINSKAYA G T. Protegulum and brephic shell of the earliest organophosphatic brachiopods[J]. Paleontological Journal, 2016, 50(2): 141-152.
DOI URL |
[56] | TOPPER T P, HOLMER L E, SKOVSTED C B, et al. The oldest brachiopods from the Lower Cambrian of South Australia[J]. Acta Palaeontologica Polonica, 2013, 58(1): 93-109. |
[57] |
ZHANG Z L, ZHANG Z, HOLMER L E, et al. Post‐metamorphic allometry in the earliest acrotretoid brachiopods from the lower Cambrian (Series 2) of South China, and its implications[J]. Palaeontology, 2018, 61(2): 183-207.
DOI URL |
[58] | HOLMER L E. Middle Ordovician phosphatic inarticulate brachiopods from Våstergotland and Dalarna, Sweden[J]. Fossils and Strata, 1989, 26: 1-172. |
[59] |
SKOVSTED C B, HOLMER L E. The Lower Cambrian brachiopod Kyrshabaktella and associated shelly fossils from the Harkless Formation, southern Nevada[J]. GFF, 2006, 128(4): 327-337.
DOI URL |
[60] |
STRENG M, HOLMER L E, POPOV L E, et al. Columnar shell structures in early linguloid brachiopods: new data from the Middle Cambrian of Sweden[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2007, 98(3/4): 221-232.
DOI URL |
[61] |
ZHANG Z L, SKOVSTED C B, ZHANG Z. A hyolithid without helens preserving the oldest hyolith muscle scars; palaeobiology of Paramicrocornus from the Shujingtuo Formation (Cambrian Series 2) of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 489: 1-14.
DOI URL |
[62] |
WILLIAMS A. Microscopic imprints on the juvenile shells of Palaeozoic linguliform brachiopods[J]. Palaeontology, 2003, 46(1): 67-92.
DOI URL |
[63] | 张志飞. 早寒武世澄江化石库腕足动物研究[D]. 西安: 西北大学, 2006. |
[64] |
ZHANG Z, HAN J, ZHANG X, et al. Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata, Brachiopoda) from southern China[J]. Acta Zoologica, 2007, 88(1): 65-70.
DOI URL |
[65] | LÜTER C. Brachiopod larval setae-a key to the phylum’s ancestral life cycle?[J]. Systematics Association Special Volume, 2001, 63: 46-55. |
[66] |
POPOV L E, BASSETT M G, HOLMER L E, et al. Early ontogeny and soft tissue preservation in siphonotretide brachiopods: new data from the Cambrian-Ordovician of Iran[J]. Gondwana Research, 2009, 16(1): 151-161.
DOI URL |
[67] |
KLINGENBERG C P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny[J]. Biological Reviews, 1998, 73(1): 79-123.
DOI URL |
[68] |
POPOV L, HOLMER L E. Cambrian-Ordovician lingulate brachiopods from Scandinavia, Kazakhstan, and South Ural Mountains[J]. Lethaia, 1994, 27(2): 166.
DOI URL |
[69] |
CHUANG S H. Larval development in Discinisca (Inarticulate Brachiopod)[J]. American Zoologist, 1977, 17(1): 39-53.
DOI URL |
[70] |
POPOV L E, HOLMER L E, HUGHES N C, et al. Himalayan Cambrian brachiopods[J]. Papers in Palaeontology, 2015, 1(4): 345-399.
DOI URL |
[71] |
HENDERSON R A, DANN A L. Substrate control of benthos in a Middle Cambrian near-shore, epeiric palaeoenvironmental setting[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(3): 474-487.
DOI URL |
[72] |
BAKER P G, LOGAN A. Support from early juvenile Jurassic, Cretaceous and Holocene thecideoid species for a postulated common early ontogenetic development pattern in thecideoid brachiopods[J]. Palaeontology, 2011, 54(1): 111-131.
DOI URL |
[73] |
TOPPER T P, HARPER D A T, AHLBERG P. Reappraisal of the brachiopod Acrotreta socialis von Seebach, 1865: clarifying 150 years of confusion[J]. GFF, 2013, 135(2): 191-203.
DOI URL |
[74] |
USHATINSKAYA G T. Stratigraphic and geographic distribution of acrotretids (Brachiopoda, Lingulata) in the Middle and Late Cambrian[J]. Paleontological Journal, 2010, 44(9): 1164-1175.
DOI URL |
[75] | BALIŃSKI A. Evolution of the embryonic development in lingulid brachiopods[J]. Acta Palaeontologica, 1997, 42(1): 45-56. |
[76] | WILLIAMS A, POPOV L E, HOLMER L E, et al. The diversity and phylogeny of the paterinate brachiopods[J]. Palaeontology, 1998, 41(2): 221-262. |
[77] |
POPOV L E, EGERQUIST E, HOLMER L E. Earliest ontogeny of Middle Ordovician rhynchonelliform brachiopods (Clitambonitoidea and Polytoechioidea): implications for brachiopod phylogeny[J]. Lethaia, 2007, 40(1): 85-96.
DOI URL |
[78] | YATSU N. On the development of Lingula anatina[J]. Science, 1902, 16(414): 901-902. |
[79] |
GHOBADI POUR M, KEBRIAEE-ZADEH M R, POPOV L E.. Early Ordovician (Tremadocian) brachiopods from the Eastern Alborz Mountains, Iran[J]. Estonia Journal of Earth Sciences, 2011, 60(2): 65.
DOI URL |
[80] |
HOLMER L E, POPOV L E, GHOBADI POUR M, et al. Linguliform brachiopods from the Cambrian (Guzhangian) Karpinsk Formation of Novaya Zemlya[J]. Papers in Palaeontology, 2020: 1-22. DOI: 10.1002/spp2.1314
DOI |
[81] |
NIELSEN C. The development of the brachiopod Crania (Neocrania) anomala (O.F.Müller) and its phylogenetic significance[J]. Acta Zoologica, 1991, 72(1): 7-28.
DOI URL |
[82] | LI G X, STEINER M, ZHU M Y, et al. Early Cambrian eodiscoid trilobite Hupeidiscus orientalis from South China: ontogeny and implications for affinities of Mongolitubulus-like sclerites[J]. Bulletin of Geosciences, 2012, 87(1): 159-169. |
[83] |
OKADA Y, SAWAKI Y, KOMIYA T, et al. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China[J]. Gondwana Research, 2014, 25(3): 1027-1044.
DOI URL |
[84] | PAN B, SKOVSTED C B, BROCK G A, et al. Early Cambrian organophosphatic brachiopods from the Xinji Formation, at Shuiyu section, Shanxi Province, North China[J]. Palaeoworld, 2019. https://doi.org/10.1016/j.palwor.2019.07.001 |
[85] | CLAYBOURN T M, SKOVSTED C B, HOLMER L E, et al. Brachiopods from the Byrd Group (Cambrian Series 2, Stage 4) Central Transantarctic Mountains, East Antarctica: biostratigraphy, phylogeny and systematics[J]. Papers in Palaeontology, 2020. https://doi.org/10.1002/spp2.1295 |
[86] |
USHATINSKAYA G T. Origin and dispersal of the earliest brachiopods[J]. Paleontological Journal, 2008, 42(8): 776-791.
DOI URL |
[87] | DEVAERE L, HOLMER L, CLAUSEN S, et al. Oldest mickwitziid brachiopod from the Terreneuvian of southern France[J]. Acta Palaeontologica Polonica, 2014, 60(3): 755-768. |
[88] | HOLMER L E, POPOV L E, WRONA R. Early Cambrian lingulate brachiopods from glacial erratics of King George Island (South Shetland Islands), Antarctica[J]. Antarctica Palaeontologia Polonica, 1996, 55: 37-50. |
[89] | ROWELL A J. Early Cambrian brachiopods from the southwestern Great Basin of California and Nevada[J]. Journal of Paleontology, 1977, 51(1): 68-85. |
[90] |
HOLMER L E, POPOV LE, KONEVA SP, et al. Early Cambrian Lingulellotreta (Lingulata, Brachiopoda) from South Kazakhstan (Malyi Karatau Range) and South China (Yunnan)[J]. Journal of Paleontology, 1997, 71(4): 577-583.
DOI URL |
[1] | 孙彩云, 郑冰清, 李俊, 符洪铭, 孙荣卿, 刘红豪, 廖祖莹, 江红生, 吴振斌, 夏世斌, 王培. 沉水植物对岩溶碳汇稳定性影响研究[J]. 地学前缘, 2024, 31(5): 430-439. |
[2] | 何进忠, 丁振举, 朱永新, 甄红旭, 张万仁, 刘杰. 甘肃西秦岭矿床成矿系列及其量化评价[J]. 地学前缘, 2024, 31(3): 218-234. |
[3] | 胡瑞忠, 高伟, 付山岭, 苏文超, 彭建堂, 毕献武. 华南中生代陆内成矿作用[J]. 地学前缘, 2024, 31(1): 226-238. |
[4] | 杨风丽, 徐铭辰, 庄圆, 赵西西, 胡虞杨, 杨瑞青. 古生代中国中西部三大陆块古地理位置重建与演变[J]. 地学前缘, 2022, 29(6): 265-276. |
[5] | 朱伟林, 徐旭辉, 王斌, 曹倩, 陈春峰, 高顺莉, 冯凯龙, 付晓伟. 华南晚中生代陆弧迁移与海域盆地演化[J]. 地学前缘, 2022, 29(6): 277-290. |
[6] | 刘云慧, 宇振荣, 罗明. 国土整治生态修复中的农业景观生物多样性保护策略[J]. 地学前缘, 2021, 28(4): 48-54. |
[7] | 罗明, 张世文, 魏洪斌, 周鹏飞, 周妍, 陈妍, 李灼超, 张金桃. 基于IUCN《矿山生物多样性管理系列指南》的大宝山矿生态修复实践研究[J]. 地学前缘, 2021, 28(4): 90-99. |
[8] | 赵冰清, 白中科, 郭东罡, 曹银贵. 黄土区露天煤矿排土场人工林下植被发育动态[J]. 地学前缘, 2021, 28(4): 153-164. |
[9] | 谢桂青, 毛景文, 张长青, 李伟, 宋世伟, 章荣清. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘, 2021, 28(3): 252-270. |
[10] | 华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航. 新元古代末期高家山生物群的生态多样性[J]. 地学前缘, 2020, 27(6): 28-46. |
[11] | 沈阳, 王训练, 李玉坤, 杨志华, 岑武轩, 王雪兵. 黔南上司地区石炭系有孔虫:兼论华南维宪阶有孔虫生物地层序列[J]. 地学前缘, 2020, 27(6): 213-233. |
[12] | 罗海, 李杰, 邹亚菲, 徐会明. 硅藻生物多样性对千年尺度气候突变的快速响应:以云南云龙天池湖泊末次冰消期记录为例[J]. 地学前缘, 2020, 27(6): 289-299. |
[13] | 汪筱林, 李阳, 裘锐, 蒋顺兴, 张鑫俊, 陈鹤, 王俊霞, 程心. 中国早白垩世翼龙动物群及其多样性对比[J]. 地学前缘, 2020, 27(6): 347-364. |
[14] | 李细光,潘黎黎,李冰溯,聂冠军,吴教兵,陆俊宏,黎峻良,严小敏. 广西灵山断裂北段古地震事件初步研究[J]. 地学前缘, 2018, 25(4): 268-275. |
[15] | 李三忠,臧艺博,王鹏程,索艳慧,李玺瑶,刘鑫,周在征,刘晓光,王倩. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 2017, 24(4): 213-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||