地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 104-115.DOI: 10.13745/j.esf.sf.2020.6.5
郭俊锋1,2(), 强亚琴1,2, 韩健3, 宋祖晨1,2, 王文哲1,2, 张志飞3
收稿日期:
2020-03-05
修回日期:
2020-05-14
出版日期:
2020-11-02
发布日期:
2020-11-02
作者简介:
郭俊锋(1976—),男,副教授,主要从事寒武纪地层古生物方面的研究。E-mail: junfengg@chd.edu.cn
基金资助:
GUO Junfeng1,2(), QIANG Yaqin1,2, HAN Jian3, SONG Zuchen1,2, WANG Wenzhe1,2, ZHANG Zhifei3
Received:
2020-03-05
Revised:
2020-05-14
Online:
2020-11-02
Published:
2020-11-02
摘要:
埃迪卡拉纪—寒武纪转换时期小壳化石的突然出现是世人瞩目的重要演化事件之一,它见证了动物的爆发式快速演化过程,标志着以两侧对称动物为特征的寒武纪生态系统的开始。湖北三峡地区寒武系纽芬兰统岩家河组处于幸运阶—第二阶这一关键层段,是研究上述问题的理想地区之一。岩家河组小壳化石研究最近取得的进展,为寒武系纽芬兰统幸运阶/第二阶界线的标定,和寒武纪早期软体动物和刺胞动物的演化及个体发育提供了重要的化石依据,本文对其进行了总结。全球界线层型剖面和点位(GSSP)寒武系第二阶底界划分标志的Watsonella crosbyi和Aldanella attleborensis在岩家河组第5段底部的同时出现,意味着岩家河组第5段已归属寒武系第二阶。这两类软体动物化石均广泛分布于华南、蒙古、西伯利亚和北美等大陆碳酸盐岩相寒武系第二阶地层中,它们均是定义寒武系第二阶底界的有力竞争者。另外,W.crosbyi壳顶下方一对肌肉附着结构的发现提供了重要的软组织结构信息,证实了W.crosbyi为内腹型壳,归属为未扭曲的软体动物太阳女神螺类。新发现六方锥石类Septuconularia yanjiaheensis具侧向压扁、两辐射对称的、14个等大锥面的围鞘,是迄今所描述的六方锥石类中锥面数最多的类型。根据横肋疏密程度,围鞘由下向上可分为三部分,可能代表胚胎期、幼年期和成年期不同的生长阶段。Septuconularia显然由寒武系幸运阶Hexaconularia通过扇面扩增演变而来,证明Hexaconularia可能是Arthrochites和Septuconularia之间的中间过渡类型。新发现的橄榄蛋类Octapyrgites elongatus与幸运阶Olivooides和Quadrapyrgites十分相似,围鞘由方形的壳顶区和波纹状倒宝塔形的远顶区组成。然而Octapyrgites只有8个口折叶,有别于具12个口折叶的Quadrapyrgites。通过与幸运期水母类多种对称方式对比,发现在寒武系第二阶橄榄蛋类数量减少和五辐射对称骨状壳类缺失,表明在幸运期/第二期转换时期,底栖固着型的刺胞动物水母类多样性发生了明显衰落,甚至部分绝灭,而同期的两侧对称动物则迅速辐射演化。
中图分类号:
郭俊锋, 强亚琴, 韩健, 宋祖晨, 王文哲, 张志飞. 三峡地区寒武系纽芬兰统岩家河组小壳化石研究进展[J]. 地学前缘, 2020, 27(6): 104-115.
GUO Junfeng, QIANG Yaqin, HAN Jian, SONG Zuchen, WANG Wenzhe, ZHANG Zhifei. Recent research progress on small shelly fossils from the Cambrian (Terreneuvian) Yanjiahe Formation in the Three Gorges area[J]. Earth Science Frontiers, 2020, 27(6): 104-115.
图1 湖北三峡地区寒武系岩家河组地层序列及野外照片 a—岩家河组地层序列及关键小壳化石分布;b—岩家河组第5段详细划分;c—岩家河组第5段野外照片,显示风暴沉积的背景层(磷块岩)和事件层(砾屑灰岩);d—岩家河组第5段野外照片,显示风暴沉积结构。
Fig.1 Stratigraphic sequence of the Cambrian Yanjiahe Formation and field photos from the Three Gorges area of Hubei Province
图2 三峡地区寒武系岩家河组第5段Watsonella crosbyi和Aldanella attleborensis a,b,c—Watsonella crosbyi,分别为侧视、背视、腹视,标本号:CUBar186-5,箭头指示肌肉附着部位;d,e,f—Aldanella attleborensis,分别为顶视、脐视、口视,标本号:CUBar186-10。
Fig.2 Watsonella crosbyi and Aldanella attleborensis from Member 5 of the Cambrian Yanjiahe Formation in the Three Gorges area
图3 三峡地区寒武系岩家河组第5段Septuconularia yanjiaheensis和Octapyrgites elongates a,b,c—Septuconularia yanjiaheensis,分别为侧视、顶视、口视,标本号:CUBar173-4[35];d,e,f—Octapyrgites elongatus,分别为侧视、顶视、口视,标本号:CUBar90-5[34]。
Fig.3 Septuconularia yanjiaheensis and Octapyrgites elongatus from Member 5 of the Cambrian Yanjiahe Formation in the Three Gorges area
[1] |
SHU D G. Cambrian explosion: birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
DOI URL |
[2] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
DOI URL |
[3] |
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[4] |
ZHURAVLEV A Y, WOOD R A. The two phases of the Cambrian Explosion[J]. Scientific Reports, 2018, 8: 16656.
DOI URL |
[5] | 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1455-1490. |
[6] | QIAN Y. Stratigraphy and palaeontology of systematic boundaries in China, Precambrian-Camhrian boundary (2), Early Cambrian small shelly fossils of China with special reference to the Precambrian-Cambrian boundary[M]. Nanjing: Nanjing University Publishing House, 1989. |
[7] | BENGTSON S, MORRIS S C. Early radiation of biomineralizing phyla[M]. Boston, America: Springer, 1992: 447-481. |
[8] | 陈平. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义[G]//地层古生物论文集(第十三辑). 北京: 中国地质学会, 1984: 49-64. |
[9] | 丁莲芳, 李勇, 陈会鑫. 湖北宜昌震旦系—寒武系界线地层Micrhystridium regulare化石的发现及其地层意义[J]. 微体古生物学报, 1992, 9(3): 303-309, 345. |
[10] |
YAO J X, XIAO S H, YIN L M, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations(Tarim, North-West China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708.
DOI URL |
[11] |
GUO J F, LI Y, HAN J, et al. Fossil association from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, South China[J]. Acta Geologica Sinica (English Edition), 2008, 82(6): 1124-1132.
DOI URL |
[12] |
ISHIKAWA T, UENO Y, KOMIYA T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208.
DOI URL |
[13] |
ISHIKAWA T, UENO Y, SHU D G, et al. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China[J]. Precambrian Research, 2013, 225: 190-208.
DOI URL |
[14] | 郭俊锋, 李勇, 韩健, 等. 原锥虫属(Protoconites Chen et al., 1994)在湖北三峡地区纽芬兰统(Terreneuvian)岩家河组的发现[J]. 自然科学进展, 2009, 19(2): 180-184. |
[15] | 郭俊锋, 李勇, 舒德干. 湖北三峡地区纽芬兰统岩家河组的宏体藻类化石[J]. 古生物学报, 2010, 49(3): 336-342. |
[16] | 郭俊锋, 李勇, 舒德干, 等. 湖北宜昌纽芬兰统岩家河组结核的特征及形成过程[J]. 沉积学报, 2010, 28(4): 676-681. |
[17] | 郭俊锋, 李勇, 舒德干. 湖北宜昌寒武系纽芬兰统岩家河组中的蓝菌类化石[J]. 微体古生物学报, 2010, 27(2): 144-149. |
[18] | 郭俊锋, 强亚琴, 宋祖晨, 等. 寒武纪早期岩家河生物群: 研究进展和展望[J]. 古生物学报, 2017, 56(4): 461-475. |
[19] |
DONG L, XIAO S H, SHEN B, et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area(Tarim Block, Northwestern China)[J]. Journal of Paleontology, 2009, 83(1): 30-44.
DOI URL |
[20] |
JIANG G Q, WANG X Q, SHI X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317/318: 96-110.
DOI URL |
[21] |
GUO J F, LI Y, HAN H P, et al. New macroscopic problematic fossil from the Early Cambrian Yanjiahe Biota, Yichang, Hubei, China[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 791-798.
DOI URL |
[22] |
GUO J F, LI Y, LI G X. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[23] | 王丹, 凌洪飞, 李达, 等. 三峡地区岩家河埃迪卡拉系-寒武系界线剖面碳同位素地层学研究[J]. 地层学杂志, 2012, 36(1): 21-30. |
[24] |
SHANG X D, LIU P J, YANG B, et al. Ecology and phylogenetic affinity of the Early Cambrian tubular microfossil Megathrix longus[J]. Palaeontology, 2016, 59(1): 13-28.
DOI URL |
[25] |
AHN S Y, ZHU M Y. Lowermost Cambrian acritarchs from the Yanjiahe Formation, South China: implication for defining the base of the Cambrian in the Yangtze Platform[J]. Geological Magazine, 2017, 154(6): 1217-1231.
DOI URL |
[26] |
CHANG S, FENG Q L, CLAUSEN S, et al. Sponge spicules from the lower Cambrian in the Yanjiahe Formation, South China: the earliest biomineralizing sponge record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 36-44.
DOI URL |
[27] |
CHANG S, FENG Q L, ZHANG L. New siliceous microfossils from the Terreneuvian Yanjiahe Formation, South China: the possible earliest radiolarian fossil record[J]. Journal of Earth Science, 2018, 29(4): 912-919.
DOI URL |
[28] |
CHANG S, CLAUSEN S, ZHANG L, et al. New probable cnidarian fossils from the lower Cambrian of the Three Gorges area, South China, and their ecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 150-166.
DOI URL |
[29] |
CHANG S, ZHANG L, CLAUSEN S, et al. The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems[J]. Precambrian Research, 2019, 333: 105438.
DOI URL |
[30] |
CHANG S, ZHANG L, CLAUSEN S, et al. Source of silica and silicification of the lowermost Cambrian Yanjiahe Formation in the three Gorges area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548: 109697.
DOI URL |
[31] | 潘时妹, 冯庆来, 常珊. 湖北宜昌寒武系纽芬兰统岩家河组小壳化石[J]. 微体古生物学报, 2018, 35(1): 30-40. |
[32] |
TOPPER T P, GUO J F, CLAUSEN S, et al. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria[J]. Nature Communications, 2019, 10: 1366.
DOI URL |
[33] |
STEINER M, LI G X, QIAN Y, et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
DOI URL |
[34] |
GUO J F, HAN J, VAN ITEN H, et al. A new tetraradial olivooid (Medusozoa) from the Lower Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(3): 457-466.
DOI URL |
[35] |
GUO J F, HAN J, VAN ITEN H, et al. A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(1): 45-55.
DOI URL |
[36] | GUO J F, LI G X, QIANG Y Q, et al. Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges area, South China[J]. Palaeoworld, 2020. https://doi.org/10.1016/j.palwor.2020.04.006. |
[37] | STEINER M, YANG B, HOHL S, et al. Small skeletal fossil and carbon isotope record of the southern Huangling Anticline, Hubei (China) and implications for chemostratigraphy on the Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020. https://doi.org/10.1016/j.palaeo.2020.109817. |
[38] |
LI G X, ZHAO X, GUBANOV A P, et al. Early Cambrian mollusc Watsonella crosbyi: a potential GSSP index fossil for the base of the Cambrian Stage 2[J]. Acta Geologica Sinica (English Edition), 2011, 85(2): 309-319.
DOI URL |
[39] | DEVAERE L, CLAUSEN S, STEINER M, et al. Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France[J]. Palaeontologia Electronica, 2013, 16: 1-91. |
[40] |
JACQUET S M, BROUGHAM T, SKOVSTED C B, et al. Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Normanville Group in South Australia[J]. Geological Magazine, 2017, 154(5): 1088-1104.
DOI URL |
[41] | KOUCHINSKY A, BENGTSON S, LANDING E, et al. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia[J]. Acta Palaeontologica Polonica, 2017, 62: 311-440. |
[42] | PEEL J S. Functional morphology of the class Helcionelloida nov., and the early evolution of the Mollusca[M]//SIMONETTA A, CONWAY MORRIS S. The early evolution of metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press and University of Camerino, 1991: 157-177. |
[43] | PEEL J S. The classes Tergomya and Helcionelloida and early molluscan evolution[J]. Grønlands Geologiske Undersøgelse Bulletin, 1991, 161: 11-65. |
[44] | RUNNEGAR B. Early evolution of the Mollusca: the fossil record[M]//TAYLOR J D. Origin and evolutionary radiation of the Mollusca. Oxford: Oxford University Press, 1996: 77-87. |
[45] | PARKHAEV P Y. Molluscs and siphonoconchs[M]//ALEXANDER E M, JAGO J B, ROZANOV A Y, et al. The Cambrian biostratigraphy of the Stansbury Basin, South Australia. Moscow: Nauka, 2001: 133-210. |
[46] |
KOUCHINSKY A, BENGTSON S, RUNNEGAR B, et al. Chronology of early Cambrian biomineralisation[J]. Geological Magazine, 2012, 149(2): 221-251.
DOI URL |
[47] |
LANDING E, GEYER G, BRASIER M D, et al. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy-overcoming deficiencies of the first appearance datum (FAD) concept[J]. Earth-Science Reviews, 2013, 123: 133-172.
DOI URL |
[48] |
LANDING E D, KOUCHINSKY A. Correlation of the Cambrian evolutionary radiation: geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance[J]. Geological Magazine, 2016, 153(4): 750-756.
DOI URL |
[49] |
BETTS M J, PATERSON J R, JACQUET S M, et al. Early Cambrian chronostratigraphy and geochronology of South Australia[J]. Earth-Science Reviews, 2018, 185: 498-543.
DOI URL |
[50] |
BRASIER M D, SHIELDS G, KULESHOV V N, et al. Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485.
DOI URL |
[51] |
ROZANOV A Y, ZHU M Y, PAK K L, et al. The second Sino-Russian Symposium on the Lower Cambrian Subdivision[J]. Paleontological Journal, 2008, 42(4): 441-446.
DOI URL |
[52] |
YANG B, STEINER M, LI G X, et al. Terreneuvian small shelly faunas of East Yunnan (South China) and their biostratigraphic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 28-58.
DOI URL |
[53] |
BETTS M J, PATERSON J R, JAGO J B, et al. A new lower Cambrian shelly fossil biostratigraphy for South Australia[J]. Gondwana Research, 2016, 36: 176-208.
DOI URL |
[54] |
BETTS M J, PATERSON J R, JAGO J B, et al. Global correlation of the early Cambrian of South Australia: shelly fauna of the Dailyatia odyssei Zone[J]. Gondwana Research, 2017, 46: 240-279.
DOI URL |
[55] |
NAGOVITSIN K E, ROGOV V I, MARUSIN V V, et al. Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform[J]. Precambrian Research, 2015, 270: 226-245.
DOI URL |
[56] |
SMITH E F, MACDONALD F A, PETACH T A, et al. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia[J]. Geological Society of America Bulletin, 2016, 128(3/4): 442-468.
DOI URL |
[57] |
PARKHAEV P Y. A finding of Mollusks Watsonella crosbyi Grabau (Gastropoda: Helcionelliformes) in the Botomian of China[J]. Doklady Earth Sciences, 2019, 488(2): 1161-1165.
DOI URL |
[58] |
YUN H, ZHANG X L, LI L Y, et al. Skeletal fossils and microfacies analysis of the lowermost Cambrian in the southwestern margin of the North China Platform[J]. Journal of Asian Earth Sciences, 2016, 129: 54-66.
DOI URL |
[59] |
LI L Y, ZHANG X L, YUN H, et al. New occurrence of Cambroclavus absonus from the lowermost Cambrian of North China and its stratigraphical importance[J]. Alcheringa: An Australasian Journal of Palaeontology, 2016, 40(1): 45-52.
DOI URL |
[60] |
PAN B, SKOVSTED C B, SUN H J, et al. Biostratigraphical and palaeogeographical implications of Early Cambrian hyoliths from the North China Platform[J]. Alcheringa: An Australasian Journal of Palaeontology, 2019, 43(3): 351-380.
DOI URL |
[61] | PARKHAEV P, KARLOVA G A, ROZANOV A Y. Taxonomy, stratigraphy and biogeography of Aldanella attleborensis: a possible candidate for defining the base of Cambrian Stage 2[J]. Museum of Northern Arizona Bulletin, 2011, 67: 298-300. |
[62] | PARKHAEV P Y. On the stratigraphy of Aldanella attleborensis-potential index species for defining the base of Cambrian Stage 2[C]//ZHAN R B, HUANG B. Extended Summary, IGCP Project 591 Field Workshop. Nanjing: Nanjing University Press, 2014: 102-105. |
[63] |
PARKHAEV P Y, KARLOVA G A. Taxonomic revision and evolution of Cambrian mollusks of the genus Aldanella Vostokova, 1962 (Gastropoda: Archaeobranchia)[J]. Paleontological Journal, 2011, 45(10): 1145-1205.
DOI URL |
[64] | POJETA J, RUNNEGAR B. The palaeontology of rostroconch mollusks and the early history of the phylum Mollusca[J]. Geological Survey Professional Paper, 1976, 968(968): 1-88. |
[65] | PARKHAEV P Y. The Early Cambrian radiation of Mollusca[M]//PONDER W F, LINDBERG D R. Phylogeny and evolution of the Mollusca. Berkeley, America: University of California Press, 2008: 33-69. |
[66] |
PARKHAEV P Y. On the position of Cambrian archaeobranchians in the system of the class Gastropoda[J]. Paleontological Journal, 2017, 51(5): 453-463.
DOI URL |
[67] |
VINTHER J. The origins of molluscs[J]. Palaeontology, 2015, 58(1): 19-34.
DOI URL |
[68] | PARKHAEV P Y. The functional morphology of the Cambrian univalved mollusks-helcionellids(Art.2)[J]. Paleontological Journal, 2001, 35(5): 470-475. |
[69] | THOMAS R D K, RUNNEGAR B, MATT K. Pelagiella exigua, an early Cambrian stem gastropod with chaetae: lophotrochozoan heritage and conchiferan novelty[J]. Palaeontology, 2020. https://doi.org/10.1111/pala.12476. |
[70] |
RUNNEGAR B. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs[J]. Lethaia, 1981, 14(4): 311-322.
DOI URL |
[71] |
HAN J, LI G X, WANG X, et al. Olivooides-like tube aperture in Early Cambrian carinachitids (Medusozoa, Cnidaria)[J]. Journal of Paleontology, 2018, 92(1): 3-13.
DOI URL |
[72] |
MORRIS S C, CHEN M G. Carinachitiids, hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China[J]. Journal of Paleontology, 1992, 66(3): 384-406.
DOI URL |
[73] |
DONG X P, CUNNINGHAM J A, BENGTSON S, et al. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1757): 20130071.
DOI URL |
[74] |
DONG X P, VARGAS K, CUNNINGHAM J A, et al. Developmental biology of the early Cambrian cnidarian Olivooides[J]. Palaeontology, 2016, 59(3): 387-407.
DOI URL |
[75] |
HAN J, KUBOTA S, LI G X, et al. Early Cambrian pentamerous cubozoan embryos from South China[J]. PLoS One, 2013, 8(8): e70741.
DOI URL |
[76] | 韩健, 郭俊锋, 欧强, 等. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78. |
[77] | 何廷贵. 扬子地台区早寒武世锥石动物及其早期演化[J]. 成都地质学院学报, 1987, 14(2): 7-18. |
[78] |
STEINER M, QIAN Y, LI G X, et al. The developmental cycles of early Cambrian Olivooidae fam. nov.(?Cycloneuralia) from the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 97-124.
DOI URL |
[79] |
DUAN B C, DONG X P, PORRAS L, et al. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1869): 20172188.
DOI URL |
[80] | 陈孟莪. 四川峨眉麦地坪剖面震旦系-寒武系界线的新认识及有关化石群的记述[J]. 地质科学, 1982, 17(3): 253-262, 345. |
[81] | 何原相, 杨暹和. 四川南江早寒武世早期的腔肠动物化石[G]//中国地质科学院成都地质矿产研究所文集. 成都: 中国地质科学院成都地质矿产研究所, 1986: 31-48. |
[82] |
LIU Y H, LI Y, SHAO T Q, et al. Quadrapyrgites from the lower Cambrian of South China: growth pattern, post-embryonic development, and affinity[J]. Chinese Science Bulletin, 2014, 59(31): 4086-4095.
DOI URL |
[83] |
HAN J, KUBOTA S, LI G X, et al. Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China[J]. Gondwana Research, 2016, 31: 150-163.
DOI URL |
[84] | HAN J, LI G X, KUBOTA S, et al. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides[J]. Acta Geologica Sinica (English Edition), 2016, 90(1): 38-65. |
[85] |
SHAO T Q, LIU Y H, DUAN B C, et al. The Fortunian (lowermost Cambrian) Qinscyphus necopinus (Cnidaria, Scyphozoa, Coronatae) underwent direct development[J]. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 2018, 289(2): 149-159.
DOI URL |
[86] |
LI G X, STEINER M, ZHU X J, et al. Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 229-249.
DOI URL |
[87] |
MALOOF A C, PORTER S M, MOORE J L, et al. The earliest Cambrian record of animals and ocean geochemical change[J]. Geological Society of America Bulletin, 2010, 122(11/12): 1731-1774.
DOI URL |
[88] |
CARTWRIGHT P, HALGEDAHL S L, HENDRICKS J R, et al. Exceptionally preserved jellyfishes from the Middle Cambrian[J]. PLoS One, 2007, 2(10): e1121.
DOI URL |
[89] |
HAN J, HU S X, CARTWRIGHT P, et al. The earliest pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 166-173.
DOI URL |
[90] | 杨宝忠, 杨坤光, 夏文臣. 鄂东黄石地区中上寒武统风暴岩的发现及意义[J]. 地质科技情报, 2007, 26(3): 33-36. |
[91] | 宋金民, 刘树根, 赵异华, 等. 川中地区中下寒武统风暴岩特征及沉积地质意义[J]. 石油学报, 2016, 37(1): 30-42. |
[92] | 王欣, 华洪, 李朋, 等. 陕南早寒武世宽川铺生物群沉积环境及埋藏机制研究[J]. 古生物学报, 2010, 49(1): 125-132. |
[93] | 钱逸, 陈孟莪, 何廷贵, 等. 中国小壳化石分类学与生物地层学[M]. 北京: 科学出版社, 1999: 1-247. |
[1] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[2] | 凌媛, 王永, 王淑贤, 孙青, 李海兵. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342. |
[3] | 张志亮, 陈飞扬, 张志飞. 华南寒武纪碳酸盐岩中最早腕足动物的辐射、发育与分布[J]. 地学前缘, 2020, 27(6): 79-103. |
[4] | 韩健, 郭俊锋, 欧强, 宋祖晨, 刘平, 郝文静, 孙洁, 王星. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78. |
[5] | 欧强. 寒武纪叶足动物:困惑与思考[J]. 地学前缘, 2020, 27(6): 47-66. |
[6] | 卢立伍, 谭锴, 王曦. 中华原始软骨硬鳞鱼之再描述及其地质时代[J]. 地学前缘, 2020, 27(6): 371-381. |
[7] | 姬书安, 张笠夫. 内蒙古鄂尔多斯地区早白垩世新的翼龙类化石[J]. 地学前缘, 2020, 27(6): 365-370. |
[8] | 汪筱林, 李阳, 裘锐, 蒋顺兴, 张鑫俊, 陈鹤, 王俊霞, 程心. 中国早白垩世翼龙动物群及其多样性对比[J]. 地学前缘, 2020, 27(6): 347-364. |
[9] | 郭宪璞, 王士涛, 盖志琨, 赵子然, 丁孝忠, 李天福. 新疆晚奥陶世鱼形动物[J]. 地学前缘, 2020, 27(6): 341-346. |
[10] | 王建华, 赵文金, 朱敏, 李强, 蔡家琛, 张娜, 彭礼健, 罗彦超. 云南曲靖刘家冲剖面关底组中的鱼类微体化石及其地层学意义[J]. 地学前缘, 2020, 27(6): 329-340. |
[11] | 黄明立, 田坤烜, 史宇坤. 滇黔桂盆地早二叠世亚丁斯克期的沉积环境分异与䗴有孔虫响应[J]. 地学前缘, 2020, 27(6): 313-328. |
[12] | 董智, 石学法, 邹欣庆, 邹建军, 杨宝菊, 刘季花, 程振波. 冲绳海槽表层沉积物放射虫属种空间分布特征及其影响因素[J]. 地学前缘, 2020, 27(6): 300-312. |
[13] | 罗海, 李杰, 邹亚菲, 徐会明. 硅藻生物多样性对千年尺度气候突变的快速响应:以云南云龙天池湖泊末次冰消期记录为例[J]. 地学前缘, 2020, 27(6): 289-299. |
[14] | 华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航. 新元古代末期高家山生物群的生态多样性[J]. 地学前缘, 2020, 27(6): 28-46. |
[15] | 袁洁琼, 丁旋, 邹欣庆. 南黄海辐射沙脊群表层沉积物中底栖有孔虫埋葬群分布特征及其环境意义[J]. 地学前缘, 2020, 27(6): 276-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||