地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 163-182.DOI: 10.13745/j.esf.sf.2022.2.63
赵晓燕1(), 杨竹森1, 杨洋2, 曹煜2, 范建彪2, 赵苗1
收稿日期:
2021-10-23
修回日期:
2022-04-11
出版日期:
2023-03-25
发布日期:
2023-01-05
作者简介:
赵晓燕(1989—),女,博士,副研究员,主要从事矿床学的研究工作。E-mail: zxy19890926@163.com
基金资助:
ZHAO Xiaoyan1(), YANG Zhusen1, YANG Yang2, CAO Yu2, FAN Jianbiao2, ZHAO Miao1
Received:
2021-10-23
Revised:
2022-04-11
Online:
2023-03-25
Published:
2023-01-05
摘要:
特提斯喜马拉雅带内雅拉香波地区首次发现白垩纪的变质基性岩。为进一步探讨雅拉香波变质基性岩的岩石成因、岩浆源区以及其经历的变质过程,本文报道了雅拉香波变质基性岩及斜长角闪岩岩石地球化学、锆石U-Pb年代学及电子探针成分数据。研究表明,雅拉香波变质基性岩锆石U-Pb等时线年龄为(127.97±0.47) Ma,形成于早白垩世。变质基性岩可分为弱变形(组1)和强变形(组2)两种类型。组1具有较低含量的SiO2(41.82%~48.23%)、Na2O(0.48%~3.06%)、K2O(0.05%~0.12%),相对较高含量的Al2O3(11.31%~13.88%)、CaO(8.87%~15.36%)、MgO(4.62%~7.47%);相比于组1,组2的Al2O3含量(19.65%、22.46%)明显升高,MgO含量(3.26%、3.5%)降低,其他元素含量差异不大。斜长角闪岩的SiO2含量为47.41%~48.53%,Na2O(3.41%~3.84%)、K2O(0.56%~0.6%)含量低,具有较高的Al2O3(13.98%~14.24%)、CaO(10.88%~11.40%)、MgO(6.12%~6.15%)含量。变质基性岩和斜长角闪岩均属于玄武岩,具有洋中脊玄武岩(MORB)的性质。组1和斜长角闪岩显示出平缓的稀土元素配分形式,与正常型洋中脊玄武岩(N-MORB)非常类似,而组2则具有富集型洋中脊玄武岩(E-MORB)的特征;地壳组分对变质基性岩的贡献很小,而斜长角闪岩表现出明显的壳源物质混染特征。雅拉香波变质基性岩为一退变质演化过程,经历了石榴子石相变质作用阶段及绿帘角闪岩相变质作用阶段。变质基性岩同时具有N-MORB和E-MORB的特征,在地球化学性质上可以与Comei大火成岩省内已报道的基性岩进行很好地对比,暗示它们具有相似的岩浆源区和地球动力学背景,形成于地幔柱活动条件下与大印度从澳大利亚裂解出来有关的伸展背景。
中图分类号:
赵晓燕, 杨竹森, 杨洋, 曹煜, 范建彪, 赵苗. 西藏雅拉香波早白垩世变质基性岩和斜长角闪岩的发现及其地质意义[J]. 地学前缘, 2023, 30(2): 163-182.
ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance[J]. Earth Science Frontiers, 2023, 30(2): 163-182.
图1 青藏高原和喜马拉雅地体区域构造简图图(a,b图据文献[13])及雅拉香波穹窿地质图(c图据文献[20])
Fig.1 Simplified tectonic map of (a) Tibetan Plateau and (b) Himalayan terrane (Fig.a and Fig.b adapted from [13]) and (c) geological map of the Yalaxiangbo dome (Fig.c adapted from [20])
图2 雅拉香波变质基性岩及斜长角闪岩岩石学特征 (a)变质基性岩野外露头;(b)弱变形的变质基性岩;(c)强变形的变质基性岩;(d)斜长角闪岩手标本特征;(e-f)弱变形的变质基性岩镜下特征,变质矿物包括石榴子石、角闪石,少量绿帘石;(g)强变形的变质基性岩,变质矿物主要由绿帘石和角闪石组成;(h)斜长角闪岩镜下特征,主要组成矿物为角闪石及斜长石。
Fig.2 Petrological characteristics of metamorphic basic rocks and amphibolites from Yalaxiangbo. (a) Outcrop of metamorphic basic rocks. (b) Weakly deformed metamorphic basic rocks. (c) Strongly deformed metamorphic basic rocks. (d) Hand specimens of amphibolite. (e-f) Microscopic characteristics of weakly deformed metamorphic basic rocks containing garnet, hornblende and a small amount of epidote. (g) Microscopic characteristics of strongly deformed metamorphic basic rocks composed of epidote and hornblende. (h) Microscopic characteristics of amphibolite composed of hornblende and plagioclase.
![]() |
表2 雅拉香波变质基性岩和斜长角闪岩主微量元素组成
Table 2 Major (%) and trace element (10-6 ) compositions of metamorphic basic rock and plagioclase amphibolite from the Yalaxiangbo
![]() |
图4 雅拉香波变质基性岩及斜长角闪岩Nb/Y-Zr/TiO2图解(a图据文献[23])、Co-Th图解(b图据文献[24])、Th/Yb-Zr/Y图解(c图据文献[25])及Zr-Ti图解(d图据文献[26])
Fig.4 Nb/Y-Zr/TiO2 (a, adapted from [23]), Co-Th (b, adapted from [24]), Th/Yb-Zr/Y (c, adapted from [25]) and Zr-Ti (d, adapted from [26]) diagrams for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo
图5 雅拉香波变质基性岩及斜长角闪岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(球粒陨石、原始地幔、OIB、N-MORB 和 E-MORB 数据来自文献[27])
Fig.5 Chondrite-normalized REEs (a) and primitive mantle-normalized trace elements (b) variation diagrams for metamorphic basic rock and plagioclase amphibolite from Yalaxiangbo. Chondrite, primitive mantle, OIB, N-MORB and E-MORB data from [27].
样品号 | wB/% | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | ||||||||||||||
YLXB18-1-6 | 37.36 | 0.02 | 0.01 | 0.03 | 20.89 | 0.67 | 10.97 | 3.57 | 0.20 | 26.28 | 0.01 | 0.00 | 99.98 | |||||||||||||
37.26 | 0.01 | 0.01 | 0.00 | 20.77 | 0.55 | 10.17 | 6.46 | 0.15 | 23.70 | 0.02 | 0.01 | 99.11 | ||||||||||||||
36.97 | 0.00 | 0.01 | 0.00 | 20.66 | 0.55 | 10.48 | 5.63 | 0.20 | 24.63 | 0.00 | 0.03 | 99.17 | ||||||||||||||
37.40 | 0.05 | 0.00 | 0.00 | 20.83 | 0.88 | 10.25 | 1.82 | 0.18 | 28.12 | 0.02 | 0.07 | 99.61 | ||||||||||||||
36.69 | 0.00 | 0.00 | 0.00 | 21.02 | 0.64 | 10.49 | 4.27 | 0.18 | 26.81 | 0.00 | 0.04 | 100.14 | ||||||||||||||
37.17 | 0.02 | 0.01 | 0.04 | 20.40 | 0.54 | 10.22 | 5.71 | 0.24 | 24.82 | 0.00 | 0.01 | 99.16 | ||||||||||||||
37.48 | 0.01 | 0.00 | 0.00 | 20.79 | 0.51 | 10.28 | 6.19 | 0.19 | 24.16 | 0.05 | 0.00 | 99.65 | ||||||||||||||
37.62 | 0.02 | 0.00 | 0.00 | 20.75 | 0.75 | 10.35 | 2.89 | 0.19 | 27.46 | 0.02 | 0.00 | 100.04 | ||||||||||||||
样品号 | 以23个氧为基础计算的阳离子数 | |||||||||||||||||||||||||
阳离子应带 电荷Si | 阳离子应带 电荷Ti | 阳离子应带 电荷Al | 阳离子应带 电荷Cr | Fe3+ | Fe2+ | 阳离子应带 电荷Mn | 阳离子应带 电荷Mg | 阳离子应带 电荷Ca | ||||||||||||||||||
YLXB18-1-6 | 2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.74 | 0.24 | 0.08 | 0.94 | |||||||||||||||||
3.02 | 0.01 | 1.98 | 0.00 | -0.03 | 1.63 | 0.44 | 0.07 | 0.88 | ||||||||||||||||||
2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.64 | 0.39 | 0.07 | 0.91 | ||||||||||||||||||
3.01 | 0.01 | 1.97 | 0.00 | -0.01 | 1.91 | 0.12 | 0.11 | 0.88 | ||||||||||||||||||
2.94 | 0.01 | 1.98 | 0.00 | 0.11 | 1.68 | 0.29 | 0.08 | 0.90 | ||||||||||||||||||
3.01 | 0.01 | 1.95 | 0.00 | 0.00 | 1.68 | 0.39 | 0.06 | 0.89 | ||||||||||||||||||
3.02 | 0.01 | 1.97 | 0.00 | -0.03 | 1.66 | 0.42 | 0.06 | 0.89 | ||||||||||||||||||
3.01 | 0.01 | 1.96 | 0.00 | -0.01 | 1.85 | 0.20 | 0.09 | 0.89 | ||||||||||||||||||
样品号 | 各成分含量/% | |||||||||||||||||||||||||
铁铝榴石 | 钙铝榴石 | 锰铝榴石 | 镁铝榴石 | 钙铁榴石 | 钙铬榴石 | |||||||||||||||||||||
YLXB18-1-6 | 57.95 | 31.01 | 8.05 | 2.66 | 0.30 | 0.02 | ||||||||||||||||||||
54.00 | 29.61 | 14.65 | 2.19 | -0.44 | 0.00 | |||||||||||||||||||||
54.70 | 29.88 | 12.85 | 2.21 | 0.36 | 0.00 | |||||||||||||||||||||
63.13 | 29.47 | 4.11 | 3.50 | -0.21 | 0.00 | |||||||||||||||||||||
57.06 | 28.87 | 9.83 | 2.60 | 1.64 | 0.00 | |||||||||||||||||||||
55.61 | 29.29 | 12.94 | 2.14 | -0.02 | 0.04 | |||||||||||||||||||||
54.79 | 29.77 | 13.93 | 2.01 | -0.50 | 0.00 | |||||||||||||||||||||
61.20 | 29.54 | 6.49 | 2.95 | -0.18 | 0.00 |
表3 变质基性岩中石榴子石电子探针成分
Table 3 Electron probe composition of garnet from metamorphic basic rock in Yalaxiangbo
样品号 | wB/% | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | ||||||||||||||
YLXB18-1-6 | 37.36 | 0.02 | 0.01 | 0.03 | 20.89 | 0.67 | 10.97 | 3.57 | 0.20 | 26.28 | 0.01 | 0.00 | 99.98 | |||||||||||||
37.26 | 0.01 | 0.01 | 0.00 | 20.77 | 0.55 | 10.17 | 6.46 | 0.15 | 23.70 | 0.02 | 0.01 | 99.11 | ||||||||||||||
36.97 | 0.00 | 0.01 | 0.00 | 20.66 | 0.55 | 10.48 | 5.63 | 0.20 | 24.63 | 0.00 | 0.03 | 99.17 | ||||||||||||||
37.40 | 0.05 | 0.00 | 0.00 | 20.83 | 0.88 | 10.25 | 1.82 | 0.18 | 28.12 | 0.02 | 0.07 | 99.61 | ||||||||||||||
36.69 | 0.00 | 0.00 | 0.00 | 21.02 | 0.64 | 10.49 | 4.27 | 0.18 | 26.81 | 0.00 | 0.04 | 100.14 | ||||||||||||||
37.17 | 0.02 | 0.01 | 0.04 | 20.40 | 0.54 | 10.22 | 5.71 | 0.24 | 24.82 | 0.00 | 0.01 | 99.16 | ||||||||||||||
37.48 | 0.01 | 0.00 | 0.00 | 20.79 | 0.51 | 10.28 | 6.19 | 0.19 | 24.16 | 0.05 | 0.00 | 99.65 | ||||||||||||||
37.62 | 0.02 | 0.00 | 0.00 | 20.75 | 0.75 | 10.35 | 2.89 | 0.19 | 27.46 | 0.02 | 0.00 | 100.04 | ||||||||||||||
样品号 | 以23个氧为基础计算的阳离子数 | |||||||||||||||||||||||||
阳离子应带 电荷Si | 阳离子应带 电荷Ti | 阳离子应带 电荷Al | 阳离子应带 电荷Cr | Fe3+ | Fe2+ | 阳离子应带 电荷Mn | 阳离子应带 电荷Mg | 阳离子应带 电荷Ca | ||||||||||||||||||
YLXB18-1-6 | 2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.74 | 0.24 | 0.08 | 0.94 | |||||||||||||||||
3.02 | 0.01 | 1.98 | 0.00 | -0.03 | 1.63 | 0.44 | 0.07 | 0.88 | ||||||||||||||||||
2.99 | 0.01 | 1.97 | 0.00 | 0.02 | 1.64 | 0.39 | 0.07 | 0.91 | ||||||||||||||||||
3.01 | 0.01 | 1.97 | 0.00 | -0.01 | 1.91 | 0.12 | 0.11 | 0.88 | ||||||||||||||||||
2.94 | 0.01 | 1.98 | 0.00 | 0.11 | 1.68 | 0.29 | 0.08 | 0.90 | ||||||||||||||||||
3.01 | 0.01 | 1.95 | 0.00 | 0.00 | 1.68 | 0.39 | 0.06 | 0.89 | ||||||||||||||||||
3.02 | 0.01 | 1.97 | 0.00 | -0.03 | 1.66 | 0.42 | 0.06 | 0.89 | ||||||||||||||||||
3.01 | 0.01 | 1.96 | 0.00 | -0.01 | 1.85 | 0.20 | 0.09 | 0.89 | ||||||||||||||||||
样品号 | 各成分含量/% | |||||||||||||||||||||||||
铁铝榴石 | 钙铝榴石 | 锰铝榴石 | 镁铝榴石 | 钙铁榴石 | 钙铬榴石 | |||||||||||||||||||||
YLXB18-1-6 | 57.95 | 31.01 | 8.05 | 2.66 | 0.30 | 0.02 | ||||||||||||||||||||
54.00 | 29.61 | 14.65 | 2.19 | -0.44 | 0.00 | |||||||||||||||||||||
54.70 | 29.88 | 12.85 | 2.21 | 0.36 | 0.00 | |||||||||||||||||||||
63.13 | 29.47 | 4.11 | 3.50 | -0.21 | 0.00 | |||||||||||||||||||||
57.06 | 28.87 | 9.83 | 2.60 | 1.64 | 0.00 | |||||||||||||||||||||
55.61 | 29.29 | 12.94 | 2.14 | -0.02 | 0.04 | |||||||||||||||||||||
54.79 | 29.77 | 13.93 | 2.01 | -0.50 | 0.00 | |||||||||||||||||||||
61.20 | 29.54 | 6.49 | 2.95 | -0.18 | 0.00 |
样品号 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | Fe2O3 | XFe | ||
YLXB18-1-6 | 38.22 | 0.03 | 0.01 | 0.03 | 26.28 | 0.01 | 23.53 | 0.03 | 0.09 | 8.22 | 0.01 | 0.01 | 96.46 | 9.13 | 0.26 | |
38.72 | 0.00 | 0.00 | 0.00 | 26.46 | 0.01 | 23.45 | 0.16 | 0.13 | 7.99 | 0.03 | 0.03 | 96.97 | 8.88 | 0.25 | ||
38.54 | 0.01 | 0.01 | 0.04 | 26.23 | 0.01 | 23.55 | 0.09 | 0.07 | 8.32 | 0.04 | 0.00 | 96.90 | 9.25 | 0.26 | ||
38.29 | 0.02 | 0.00 | 0.00 | 25.97 | 0.00 | 23.58 | 0.00 | 0.12 | 8.21 | 0.03 | 0.00 | 96.20 | 9.12 | 0.26 | ||
38.74 | 0.02 | 0.01 | 0.05 | 26.28 | 0.01 | 23.42 | 0.09 | 0.04 | 7.94 | 0.00 | 0.00 | 96.61 | 8.82 | 0.25 | ||
38.70 | 0.00 | 0.00 | 0.05 | 26.55 | 0.01 | 23.27 | 0.07 | 0.12 | 8.08 | 0.01 | 0.00 | 96.85 | 8.98 | 0.25 | ||
38.40 | 0.00 | 0.00 | 0.00 | 26.57 | 0.01 | 23.53 | 0.05 | 0.08 | 7.74 | 0.00 | 0.04 | 96.43 | 8.60 | 0.24 | ||
38.51 | 0.00 | 0.00 | 0.03 | 26.80 | 0.01 | 23.54 | 0.09 | 0.00 | 7.75 | 0.03 | 0.01 | 96.77 | 8.62 | 0.24 | ||
38.36 | 0.03 | 0.01 | 0.02 | 26.61 | 0.00 | 23.44 | 0.16 | 0.07 | 7.92 | 0.06 | 0.06 | 96.73 | 8.80 | 0.25 | ||
38.56 | 0.02 | 0.01 | 0.00 | 26.28 | 0.01 | 23.52 | 0.12 | 0.07 | 8.25 | 0.04 | 0.00 | 96.88 | 9.17 | 0.26 | ||
YLXB18-2-1 | 38.20 | 0.00 | 0.00 | 0.05 | 26.41 | 0.00 | 23.62 | 0.10 | 0.05 | 7.92 | 0.04 | 0.00 | 96.40 | 8.81 | 0.25 | |
38.44 | 0.00 | 0.02 | 0.04 | 26.87 | 0.04 | 23.37 | 0.27 | 0.18 | 7.07 | 0.03 | 0.04 | 96.37 | 7.86 | 0.23 | ||
38.35 | 0.00 | 0.01 | 0.00 | 26.40 | 0.03 | 23.52 | 0.13 | 0.11 | 7.88 | 0.03 | 0.00 | 96.45 | 8.76 | 0.25 | ||
38.67 | 0.01 | 0.01 | 0.04 | 26.40 | 0.00 | 23.63 | 0.06 | 0.03 | 7.68 | 0.02 | 0.01 | 96.56 | 8.53 | 0.24 | ||
38.38 | 0.00 | 0.01 | 0.01 | 26.47 | 0.01 | 23.50 | 0.22 | 0.03 | 7.75 | 0.00 | 0.03 | 96.40 | 8.61 | 0.25 | ||
38.82 | 0.02 | 0.01 | 0.00 | 26.55 | 0.00 | 23.55 | 0.07 | 0.04 | 7.97 | 0.02 | 0.00 | 97.04 | 8.86 | 0.25 | ||
38.62 | 0.00 | 0.01 | 0.09 | 26.53 | 0.02 | 23.47 | 0.10 | 0.04 | 7.81 | 0.01 | 0.00 | 96.68 | 8.68 | 0.25 | ||
38.56 | 0.01 | 0.01 | 0.03 | 26.62 | 0.00 | 23.51 | 0.05 | 0.07 | 7.94 | 0.04 | 0.00 | 96.82 | 8.82 | 0.25 | ||
38.86 | 0.00 | 0.00 | 0.06 | 26.60 | 0.01 | 23.56 | 0.14 | 0.06 | 8.08 | 0.00 | 0.00 | 97.37 | 8.98 | 0.25 | ||
YLXB18-3-1 | 38.84 | 0.00 | 0.00 | 0.02 | 27.12 | 0.02 | 23.63 | 0.01 | 0.03 | 7.47 | 0.01 | 0.04 | 97.18 | 8.30 | 0.23 | |
38.67 | 0.03 | 0.00 | 0.00 | 27.08 | 0.01 | 23.74 | 0.11 | 0.11 | 7.22 | 0.06 | 0.01 | 97.03 | 8.03 | 0.23 | ||
38.66 | 0.00 | 0.01 | 0.00 | 27.87 | 0.01 | 23.38 | 0.15 | 0.06 | 6.42 | 0.12 | 0.03 | 96.68 | 7.13 | 0.20 | ||
38.93 | 0.00 | 0.01 | 0.05 | 27.18 | 0.02 | 23.61 | 0.05 | 0.08 | 6.98 | 0.07 | 0.00 | 96.96 | 7.76 | 0.22 | ||
38.64 | 0.03 | 0.01 | 0.03 | 27.33 | 0.04 | 23.69 | 0.12 | 0.18 | 6.46 | 0.01 | 0.03 | 96.56 | 7.18 | 0.21 | ||
38.71 | 0.00 | 0.01 | 0.04 | 27.42 | 0.03 | 23.42 | 0.11 | 0.04 | 6.65 | 0.03 | 0.02 | 96.48 | 7.39 | 0.21 | ||
38.72 | 0.00 | 0.00 | 0.07 | 27.35 | 0.02 | 23.55 | 0.09 | 0.06 | 6.44 | 0.07 | 0.00 | 96.36 | 7.15 | 0.21 | ||
38.74 | 0.03 | 0.00 | 0.00 | 27.44 | 0.02 | 23.48 | 0.08 | 0.01 | 6.83 | 0.03 | 0.04 | 96.68 | 7.58 | 0.22 | ||
YLXB18-5-1 | 38.27 | 0.03 | 0.00 | 0.00 | 27.01 | 0.02 | 23.28 | 0.14 | 0.14 | 6.99 | 0.03 | 0.00 | 95.89 | 7.76 | 0.22 | |
38.70 | 0.00 | 0.00 | 0.05 | 26.74 | 0.02 | 23.50 | 0.05 | 0.10 | 7.63 | 0.05 | 0.00 | 96.84 | 8.48 | 0.24 | ||
38.67 | 0.02 | 0.01 | 0.01 | 26.95 | 0.03 | 23.53 | 0.09 | 0.08 | 7.39 | 0.00 | 0.00 | 96.76 | 8.21 | 0.23 | ||
38.95 | 0.00 | 0.00 | 0.02 | 28.39 | 0.05 | 23.64 | 0.09 | 0.25 | 5.33 | 0.00 | 0.03 | 96.75 | 5.93 | 0.17 | ||
38.35 | 0.00 | 0.00 | 0.00 | 26.77 | 0.01 | 23.46 | 0.10 | 0.14 | 7.45 | 0.03 | 0.00 | 96.31 | 8.28 | 0.24 | ||
38.40 | 0.02 | 0.00 | 0.02 | 27.03 | 0.04 | 23.48 | 0.07 | 0.07 | 6.44 | 0.02 | 0.05 | 95.65 | 7.15 | 0.21 | ||
38.59 | 0.00 | 0.00 | 0.03 | 27.72 | 0.02 | 23.63 | 0.06 | 0.02 | 6.38 | 0.06 | 0.02 | 96.53 | 7.09 | 0.20 | ||
38.51 | 0.00 | 0.00 | 0.00 | 27.06 | 0.00 | 23.64 | 0.01 | 0.14 | 6.85 | 0.03 | 0.00 | 96.23 | 7.61 | 0.22 |
表4 变质基性岩中绿帘石电子探针成分
Table 4 Electron probe composition of epidote from metamorphic basic rock in Yalaxiangbo
样品号 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | Cr2O3 | Al2O3 | MgO | CaO | MnO | TiO2 | FeO | P2O5 | NiO | 总和 | Fe2O3 | XFe | ||
YLXB18-1-6 | 38.22 | 0.03 | 0.01 | 0.03 | 26.28 | 0.01 | 23.53 | 0.03 | 0.09 | 8.22 | 0.01 | 0.01 | 96.46 | 9.13 | 0.26 | |
38.72 | 0.00 | 0.00 | 0.00 | 26.46 | 0.01 | 23.45 | 0.16 | 0.13 | 7.99 | 0.03 | 0.03 | 96.97 | 8.88 | 0.25 | ||
38.54 | 0.01 | 0.01 | 0.04 | 26.23 | 0.01 | 23.55 | 0.09 | 0.07 | 8.32 | 0.04 | 0.00 | 96.90 | 9.25 | 0.26 | ||
38.29 | 0.02 | 0.00 | 0.00 | 25.97 | 0.00 | 23.58 | 0.00 | 0.12 | 8.21 | 0.03 | 0.00 | 96.20 | 9.12 | 0.26 | ||
38.74 | 0.02 | 0.01 | 0.05 | 26.28 | 0.01 | 23.42 | 0.09 | 0.04 | 7.94 | 0.00 | 0.00 | 96.61 | 8.82 | 0.25 | ||
38.70 | 0.00 | 0.00 | 0.05 | 26.55 | 0.01 | 23.27 | 0.07 | 0.12 | 8.08 | 0.01 | 0.00 | 96.85 | 8.98 | 0.25 | ||
38.40 | 0.00 | 0.00 | 0.00 | 26.57 | 0.01 | 23.53 | 0.05 | 0.08 | 7.74 | 0.00 | 0.04 | 96.43 | 8.60 | 0.24 | ||
38.51 | 0.00 | 0.00 | 0.03 | 26.80 | 0.01 | 23.54 | 0.09 | 0.00 | 7.75 | 0.03 | 0.01 | 96.77 | 8.62 | 0.24 | ||
38.36 | 0.03 | 0.01 | 0.02 | 26.61 | 0.00 | 23.44 | 0.16 | 0.07 | 7.92 | 0.06 | 0.06 | 96.73 | 8.80 | 0.25 | ||
38.56 | 0.02 | 0.01 | 0.00 | 26.28 | 0.01 | 23.52 | 0.12 | 0.07 | 8.25 | 0.04 | 0.00 | 96.88 | 9.17 | 0.26 | ||
YLXB18-2-1 | 38.20 | 0.00 | 0.00 | 0.05 | 26.41 | 0.00 | 23.62 | 0.10 | 0.05 | 7.92 | 0.04 | 0.00 | 96.40 | 8.81 | 0.25 | |
38.44 | 0.00 | 0.02 | 0.04 | 26.87 | 0.04 | 23.37 | 0.27 | 0.18 | 7.07 | 0.03 | 0.04 | 96.37 | 7.86 | 0.23 | ||
38.35 | 0.00 | 0.01 | 0.00 | 26.40 | 0.03 | 23.52 | 0.13 | 0.11 | 7.88 | 0.03 | 0.00 | 96.45 | 8.76 | 0.25 | ||
38.67 | 0.01 | 0.01 | 0.04 | 26.40 | 0.00 | 23.63 | 0.06 | 0.03 | 7.68 | 0.02 | 0.01 | 96.56 | 8.53 | 0.24 | ||
38.38 | 0.00 | 0.01 | 0.01 | 26.47 | 0.01 | 23.50 | 0.22 | 0.03 | 7.75 | 0.00 | 0.03 | 96.40 | 8.61 | 0.25 | ||
38.82 | 0.02 | 0.01 | 0.00 | 26.55 | 0.00 | 23.55 | 0.07 | 0.04 | 7.97 | 0.02 | 0.00 | 97.04 | 8.86 | 0.25 | ||
38.62 | 0.00 | 0.01 | 0.09 | 26.53 | 0.02 | 23.47 | 0.10 | 0.04 | 7.81 | 0.01 | 0.00 | 96.68 | 8.68 | 0.25 | ||
38.56 | 0.01 | 0.01 | 0.03 | 26.62 | 0.00 | 23.51 | 0.05 | 0.07 | 7.94 | 0.04 | 0.00 | 96.82 | 8.82 | 0.25 | ||
38.86 | 0.00 | 0.00 | 0.06 | 26.60 | 0.01 | 23.56 | 0.14 | 0.06 | 8.08 | 0.00 | 0.00 | 97.37 | 8.98 | 0.25 | ||
YLXB18-3-1 | 38.84 | 0.00 | 0.00 | 0.02 | 27.12 | 0.02 | 23.63 | 0.01 | 0.03 | 7.47 | 0.01 | 0.04 | 97.18 | 8.30 | 0.23 | |
38.67 | 0.03 | 0.00 | 0.00 | 27.08 | 0.01 | 23.74 | 0.11 | 0.11 | 7.22 | 0.06 | 0.01 | 97.03 | 8.03 | 0.23 | ||
38.66 | 0.00 | 0.01 | 0.00 | 27.87 | 0.01 | 23.38 | 0.15 | 0.06 | 6.42 | 0.12 | 0.03 | 96.68 | 7.13 | 0.20 | ||
38.93 | 0.00 | 0.01 | 0.05 | 27.18 | 0.02 | 23.61 | 0.05 | 0.08 | 6.98 | 0.07 | 0.00 | 96.96 | 7.76 | 0.22 | ||
38.64 | 0.03 | 0.01 | 0.03 | 27.33 | 0.04 | 23.69 | 0.12 | 0.18 | 6.46 | 0.01 | 0.03 | 96.56 | 7.18 | 0.21 | ||
38.71 | 0.00 | 0.01 | 0.04 | 27.42 | 0.03 | 23.42 | 0.11 | 0.04 | 6.65 | 0.03 | 0.02 | 96.48 | 7.39 | 0.21 | ||
38.72 | 0.00 | 0.00 | 0.07 | 27.35 | 0.02 | 23.55 | 0.09 | 0.06 | 6.44 | 0.07 | 0.00 | 96.36 | 7.15 | 0.21 | ||
38.74 | 0.03 | 0.00 | 0.00 | 27.44 | 0.02 | 23.48 | 0.08 | 0.01 | 6.83 | 0.03 | 0.04 | 96.68 | 7.58 | 0.22 | ||
YLXB18-5-1 | 38.27 | 0.03 | 0.00 | 0.00 | 27.01 | 0.02 | 23.28 | 0.14 | 0.14 | 6.99 | 0.03 | 0.00 | 95.89 | 7.76 | 0.22 | |
38.70 | 0.00 | 0.00 | 0.05 | 26.74 | 0.02 | 23.50 | 0.05 | 0.10 | 7.63 | 0.05 | 0.00 | 96.84 | 8.48 | 0.24 | ||
38.67 | 0.02 | 0.01 | 0.01 | 26.95 | 0.03 | 23.53 | 0.09 | 0.08 | 7.39 | 0.00 | 0.00 | 96.76 | 8.21 | 0.23 | ||
38.95 | 0.00 | 0.00 | 0.02 | 28.39 | 0.05 | 23.64 | 0.09 | 0.25 | 5.33 | 0.00 | 0.03 | 96.75 | 5.93 | 0.17 | ||
38.35 | 0.00 | 0.00 | 0.00 | 26.77 | 0.01 | 23.46 | 0.10 | 0.14 | 7.45 | 0.03 | 0.00 | 96.31 | 8.28 | 0.24 | ||
38.40 | 0.02 | 0.00 | 0.02 | 27.03 | 0.04 | 23.48 | 0.07 | 0.07 | 6.44 | 0.02 | 0.05 | 95.65 | 7.15 | 0.21 | ||
38.59 | 0.00 | 0.00 | 0.03 | 27.72 | 0.02 | 23.63 | 0.06 | 0.02 | 6.38 | 0.06 | 0.02 | 96.53 | 7.09 | 0.20 | ||
38.51 | 0.00 | 0.00 | 0.00 | 27.06 | 0.00 | 23.64 | 0.01 | 0.14 | 6.85 | 0.03 | 0.00 | 96.23 | 7.61 | 0.22 |
图6 雅拉香波变质基性岩及斜长角闪岩中角闪石Si-Mg/(Mg+Fe2+)分类图解(底图据文献[30])
Fig.6 Si-Mg/(Mg+Fe2+) classification diagram for hornblende in metamorphic basic rocks and amphibolites from Yalaxiangbo. Adapted from [30].
图7 雅拉香波变质基性岩及斜长角闪岩(Th/Nb)PM -(La/Nb)PM图解 (底图据文献[34];MC—中地壳和LC—下地壳据文献[31])
Fig.7 (Th/Nb)PM vs. (La/Nb)PM diagram for metamorphic basic rocks and amphibolites from Yalaxiangbo (adapted from [34]). MC (middle crust) and LC (lower crust) data from [31].
图8 雅拉香波变质基性岩及斜长角闪岩La-La/Sm(a)和La-La/Zr(b)图解
Fig.8 La-La/Sm (a) and La-La/Zr (b) diagrams for metamorphic basic rock and plagioclase amphibolite from Yalaxiangbo
图9 雅拉香波变质基性岩及斜长角闪岩La/Yb-Dy/Yb(a)和La/Sm-Sm/Yb(b)图解 图中熔融曲线运用[40]批式熔融模型计算得到[41],每条曲线上的数字对应给定源区部分熔融程度(%),亏损的MORB地幔(DMM)、富集的DMM(E-DMM)据文献[42],原始地幔数据据文献[27]。
Fig.9 La/Yb-Dy/Yb (a) and La/Sm-Sm/Yb (b) diagrams for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo, showing the partial melting curves obtained using the nonmodal batch melting equations. Tick marks on each curve correspond to degrees of partial melting (%) for a given mantle source. Depleted MORB mantle (DMM) and enriched DMM (E-DMM) compositions from [42]; primitive mantle compositions from [27].
图10 雅拉香波变质基性岩及斜长角闪岩构造判别图解 (a)Th/Yb-Nb/Yb图解,底图据文献[26];(b)2Nb-Zr/4-Y图解,底图据文献[44],A1—板内碱性玄武岩,A2—板内碱性玄武岩+板内拉斑玄武岩,B—E-MORB,C—板内拉斑玄武岩+火山弧玄武岩,D—火山弧玄武岩+N-MORB;(c)Hf/3-Th-Ta和(d)Hf/3-Th-Nb/16图解,底图据文献[45],A—正常洋中脊玄武岩,B—富集型洋中脊玄武岩或板内拉斑玄武岩,C—板内碱性玄武岩,D—岛弧拉斑玄武岩。
Fig.10 Discrimination diagram of tectonic setting for metamorphic basic rocks and plagioclase amphibolites from Yalaxiangbo. (a) Th/Yb-Nb/Yb diagram (adapted from [26]). (b) 2Nb-Zr/4-Y diagram (adapted from [44]). A1—Intraplate alkaline basalt; A2—Intraplate alkaline basalt + Intraplate tholeiite. B—E-MORB; C—Intraplate tholeiite + Volcanic arc basalt; D—Volcanic arc basalt + N-MORB. (c) Hf/3-Th-Ta diagram (adapted from [45]). (d) Hf/3-Th-Nb/16 diagrams (adapted from [45]). A—N-MORB; B—E-MORB/Intraplate tholeiite; C—Intraplate alkaline basalt; D—Island arc tholeiite.
[1] | 童劲松, 刘俊, 钟华明, 等. 藏南洛扎地区基性岩墙群锆石U-Pb定年、 地球化学特征及构造意义[J]. 地质通报, 2007, 26(12): 1654-1664. |
[2] |
JIANG S H, NIE F J, HU P, et al. An important spreading event of the neo-Tethys ocean during the Late Jurassic and Early Cretaceous: evidence from zircon U-Pb SHRIMP dating on diabase in nagarze, southern Tibet[J]. Acta Geologica Sinica, 2006, 80(4): 522-527.
DOI URL |
[3] |
ZHU D C, MO X X, PAN G T, et al. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 2008, 100(1/2/3/4): 147-173.
DOI URL |
[4] | 江思宏, 聂凤军, 胡朋, 等. 藏南基性岩墙群的地球化学特征[J]. 地质学报, 2007, 81(1): 60-71. |
[5] | 裘碧波, 朱弟成, 赵志丹, 等. 藏南措美残余大火成岩省的西延及意义[J]. 岩石学报, 2010, 26(7): 2207-2216. |
[6] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[7] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3): 2-24.
DOI URL |
[8] |
BURG J P, CHEN G M. Tectonics and structural zonation of southern Tibet, China[J]. Nature, 1984, 311(5983): 219-223.
DOI URL |
[9] |
KIND R, NI J, ZHAO W, et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet[J]. Science, 1996, 274(5293): 1692-1694.
PMID |
[10] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[11] | 莫宣学, 赵志丹, 朱弟成, 等. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束[J]. 地球科学: 中国地质大学学报, 2009, 34(1): 17-27. |
[12] |
LI G W, LIU X H, ALEX P, et al. In-situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 461-470.
DOI URL |
[13] | 梁凤华, 许志琴, 巴登珠, 等. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨[J]. 岩石学报, 2011, 27(11): 3255-3268. |
[14] | 钟华明, 夏军, 童劲松, 等. 洛扎县幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23(增刊1): 451-457. |
[15] | DAI J G, YIN A, LIU W C, et al. Nd isotopic compositions of the Tethyan Himalayan sequence in southeastern Tibet[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1306-1316. |
[16] | 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、 地球化学及其构造环境[J]. 地质学报, 2006, 80(9): 1312-1328. |
[17] |
HAUCK M L, NELSON K D, BROWN L D, et al. Crustal structure of the Himalayan orogen at -90° east longitude from Project INDEPTH deep reflection profiles[J]. Tectonics, 1998, 17(4): 481-500.
DOI URL |
[18] |
LEE J, HACKER B R, DINKLAGE W S, et al. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints[J]. Tectonics, 2000, 19(5): 872-895.
DOI URL |
[19] |
LEE J, HACKER B, WANG Y. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 2004, 26(12): 2297-2316.
DOI URL |
[20] | 吴珍汉, 叶培盛, 吴中海, 等. 特提斯喜马拉雅构造带雅拉香波穹窿构造热事件LA-ICP-MS锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(5): 595-605. |
[21] | 张进江, 郭磊, 张波. 北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征[J]. 地质科学, 2007, 42(1): 16-30. |
[22] | 曾令森, 陈晶, 高利娥, 等. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J]. 岩石学报, 2012, 28(9): 2981-2993. |
[23] | PEARCE J A. A user’guide to basalt discrimination diagrams[J]. Geological Association of Canada Short Course Notes, 1996, 12: 79-113. |
[24] |
HASTIE A R, KERR A C, PEARCE J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-co discrimination diagram[J]. Journal of Petrology, 2007, 48(12): 2341-2357.
DOI URL |
[25] |
ROSS P S, BÉDARD J H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams[J]. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839.
DOI URL |
[26] |
PEARCE J A, PEATE D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Science, 1995, 23(1): 251-285.
DOI URL |
[27] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematlcs of oceanic basalts: implications or mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345.
DOI URL |
[28] |
BECKER H, JOCHUM K P, CARLSON R W. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4): 291-308.
DOI URL |
[29] |
ENAMI M, LIOU J G, MATTINSON C G. Epidote minerals in high P/T metamorphic terranes: subduction zone and high- to ultrahigh-pressure metamorphism[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 347-398.
DOI URL |
[30] |
LEAKE B E, WOOLLEY A R, ARPS C E S, et al. Nomenclature of amphiboles report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. European Journal of Mineralogy, 1997, 9(3): 623-651.
DOI URL |
[31] | RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry, Oxford: Elsevier-Pergamon, 2003. |
[32] | THOMPSON R N, MORRISON M A, HENDRY G L, et al. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach[J]. Philosophical Transactions of the Royal Society A, 1984, 310(1514): 549-590. |
[33] |
FREY F A, WEIS D, BORISOVA A Y, et al. Involvement of continental crust in the formation of the Cretaceous Kerguelen plateau: new perspectives from ODP leg 120 sites[J]. Journal of Petrology, 2002, 43(7): 1207-1239.
DOI URL |
[34] |
NEAL C R, MAHONEY J J, CHAZEY W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and broken ridge LIP: results from ODP leg 183[J]. Journal of Petrology, 2002, 43(7): 1177-1205.
DOI URL |
[35] |
ALLÈGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
DOI URL |
[36] | MYSEN B O. Trace-element partitioning between garnet peridotite minerals and water-rich vapor: experimental data from 5 to 30 kbar[J]. American Mineralogist, 1979, 64(3/4): 274-287. |
[37] |
IRVING A J, FREY F A. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201-1221.
DOI URL |
[38] | 王亚莹, 高利娥, 曾令森, 等. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用[J]. 岩石学报, 2016, 32(12): 3572-3596. |
[39] |
WORKMAN R K, HART S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1/2): 53-72.
DOI URL |
[40] |
SHAW D M. Trace element fractionation during anatexis[J]. Geochimica et Cosmochimica Acta, 1970, 34(2): 237-243.
DOI URL |
[41] |
ALDANMAZ E, PEARCE J A, THIRLWALL M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
DOI URL |
[42] | MCKENZIE D, O’NIONS R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal pf Petrology, 1991, 32(5): 1021-1091. |
[43] |
FURMAN T, GRAHAM D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic Province[J]. Lithos, 1999, 48(1/2/3/4): 237-262.
DOI URL |
[44] |
MESCHEDE M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-1bZr-1bY diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218.
DOI URL |
[45] |
WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30.
DOI URL |
[46] |
PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94.
DOI URL |
[47] |
ZINDLER A, HART S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571.
DOI URL |
[48] | HOFMANN A W, HÉMOND C. The origin of E-MORB[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A257. |
[49] |
MICHAEL P. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 301-320.
DOI URL |
[50] | 肖文交, WINDLEY B F, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J]. 地质学报, 2006, 80(1): 32-37. |
[51] |
CHOE W H, LEE J I, LEE M J, et al. Origin of E-MORB in a fossil spreading center: the Antarctic-Phoenix Ridge, Drake Passage, Antarctica[J]. Geosciences Journal, 2007, 11(3): 185-199.
DOI URL |
[52] | 刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、 年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389. |
[53] | 王金荣, 陈万峰, 张旗, 等. MORB数据挖掘: 玄武岩判别图反思[J]. 大地构造与成矿学, 2017, 41(2): 420-431. |
[54] |
SCHILLING J G, THOMPSON G, KINGSLEY R, et al. Hotspot—migrating ridge interaction in the South Atlantic[J]. Nature, 1985, 313(5999): 187-191.
DOI URL |
[55] |
DONNELLY K E, GOLDSTEIN S L, LANGMUIR C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.
DOI URL |
[56] | WORKMAN R K, HART S R, JACKSON M, et al. Recycled metasomatized lithosphere as the origin of the enriched mantleⅡ(EM2) end-member: evidence from the Samoan Volcanic Chain[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(4): 1-44. |
[57] |
NIU Y L, BATIZA R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 471-483.
DOI URL |
[58] | NIU Y L, COLLERSON K D, BATIZA R, et al. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20'N[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B4): 7067-7087. |
[59] |
ZHU D C, PAN G T, MO X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: a probable example of plume-lithosphere interaction[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 320-335.
DOI URL |
[60] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous Province: remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 2009, 37(7): 583-586.
DOI URL |
[1] | 王学求, 张必敏, 姚文生, 刘雪敏. 地球化学探测:从纳米到全球[J]. 地学前缘, 20140101, 21(1): 65-74. |
[2] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[3] | 杨峥, 彭敏, 赵传冬, 杨柯, 刘飞, 李括, 周亚龙, 唐世琪, 马宏宏, 张青, 成杭新. 中国土壤54项指标的地球化学背景与基准研究[J]. 地学前缘, 2024, 31(4): 380-402. |
[4] | 吕良华, 王水. 耦合CO2脱气的岩溶地热水结垢趋势定量分析[J]. 地学前缘, 2024, 31(3): 402-409. |
[5] | 张佳文, 李明超, 韩帅, 张敬宜. 基于集成量子神经网络的大地构造环境判别与分析[J]. 地学前缘, 2024, 31(3): 511-519. |
[6] | 杨志波, 季汉成, 鲍志东, 史燕青, 赵雅静, 向鹏飞. 白云石晶体结构和地球化学特征对沉积环境响应:以扬子地台晚埃迪卡拉纪灯影组白云岩为例[J]. 地学前缘, 2024, 31(3): 68-79. |
[7] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[8] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[9] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[10] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[11] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[12] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[13] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[14] | 黄小强, 柳清琦, 李鹏, 刘翔, 曾乐, 张立平, 石威科, 黄志飚, 范鹏飞, 万海辉, 林跃, 汪宣民, 蔡偿. 湘东北连云山地区上伏矿床伟晶岩地球化学特征、流体包裹体特征及其对矿床成因的约束[J]. 地学前缘, 2023, 30(5): 298-313. |
[15] | 王涛, 李积清, 韩杰, 王泰山, 李玉龙, 袁博武. 东昆仑大水沟东地区稀土矿化石英正长岩地球化学、年代学及Hf同位素特征[J]. 地学前缘, 2023, 30(4): 283-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||