地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 183-214.DOI: 10.13745/j.esf.sf.2022.2.83

• 构造-岩浆作用与大地构造背景 • 上一篇    下一篇

西藏南部冈底斯带东段晚白垩世中性侵入岩的成因矿物学研究:对构建穿地壳岩浆系统的启示

王文鲁1,4(), 李小伟1,4,*(), 张泽明2,4, 田作林2,4, 李增胜3, 孙雨沁3, 刘强3, 丁慧霞1, 郝昭歌1   

  1. 1.中国地质大学(北京) 成因矿物学研究中心/地质资源勘查实验教学中心, 北京 100083
    2.中国地质科学院 地质研究所, 北京 100037
    3.山东省地质科学研究院 自然资源部金矿成矿过程与资源利用重点实验室/山东省金属矿产成矿地质过程与资源利用重点实验室, 山东 济南 250013
    4.中国地质科学院 大陆动力学集成矿物分析仪(TIMA)实验室, 北京 100037
  • 收稿日期:2022-04-22 修回日期:2022-05-24 出版日期:2023-03-25 发布日期:2023-01-05
  • 通信作者: 李小伟
  • 作者简介:王文鲁(1998―),男,硕士研究生,矿物学、岩石学、矿床学专业。E-mail: 1027626328@qq.com
  • 基金资助:
    国家自然科学基金委特提斯重大研究计划重点项目(91855210);国家重点研究开发项目(2016YFC0600310)

Genetic mineralogy of Late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, southern Tibet—construction of a trans-crustal magma system

WANG Wenlu1,4(), LI Xiaowei1,4,*(), ZHANG Zeming2,4, TIAN Zuolin2,4, LI Zengsheng3, SUN Yuqin3, LIU Qiang3, DING Huixia1, HAO Zhaoge1   

  1. 1. Research Center of Genetic Mineralogy/Resources Exploration Experiment and Training Center, China University of Geosciences (Beijing), Beijing 100083, China
    2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
    3. MNR Key Laboratory of Gold Mineralization Processes and Resource Utilization/Shandong Key Laboratory of Mineralization Geological Processes and Resources Utilization in Metallic Minerals, Shandong Institute of Geological Sciences, Jinan 250013, China
    4. Laboratory of TESCAN Integrated Mineral Analyzer, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2022-04-22 Revised:2022-05-24 Online:2023-03-25 Published:2023-01-05
  • Contact: LI Xiaowei

摘要:

穿地壳岩浆系统为认识岩浆岩中矿物成因以及矿物间的不平衡关系提供了一个新的切入点,即造岩矿物在固结之前,可能在不同地壳层次的岩浆房内经历过生长、熔蚀或流体改造等过程。如何追踪和梳理不同造岩矿物的演化历史,成为阐明岩浆岩成因的一个关键科学问题。本文以西藏冈底斯弧东段里龙含单斜辉石石英闪长岩和黑云母闪长岩为主要研究对象,对其中主要造岩矿物(单斜辉石、角闪石、黑云母、斜长石等)进行了系统的成因矿物学研究,并构建了穿地壳岩浆系统的组成要素。根据矿物的稀土元素含量和不同矿物之间的接触关系,将含单斜辉石石英闪长岩中的单斜辉石和角闪石分为Ⅰ型单斜辉石(∑REE含量高)、Ⅱ型单斜辉石(∑REE含量低)、ⅠA型角闪石(∑REE含量高)、ⅠB型角闪石(∑REE含量低),将黑云母闪长岩中的角闪石命为Ⅱ型角闪石。经过矿物温压计和水活度计计算获得了相应的结晶温压条件和体系水含量。其中Ⅰ型单斜辉石为:温度1 159~1 175 ℃,压力637~799 MPa,水含量2.5%~3.4%;Ⅱ型单斜辉石为:温度1 180~1 181 ℃,压力482~524 MPa,水含量2.4%~2.8%;ⅠA型角闪石为:温度806~854 ℃,压力320~434 MPa,水含量7.5%~7.9%;ⅠB型角闪石为:温度776~848 ℃,压力196~386 MPa,水含量6.9%~8.6%;Ⅱ型角闪石为:温度783~857 ℃,压力246~327 MPa,水含量6.5%~9.4%。这表明单斜辉石的温度、压力比角闪石高,而水含量比角闪石低,暗示单斜辉石和角闪石来自不同层次的岩浆房。进一步对与单斜辉石平衡的熔体进行了计算,推断至少一部分单斜辉石来自演化的玄武安山质岩浆,而与角闪石对应的平衡熔体Mg#值较低,对应流纹质岩浆。本研究还对单斜辉石与角闪石“再循环晶”进行了识别,指示整个岩浆过程是在开放岩浆系统中完成的,并经历了不同期次的岩浆补给或混合事件。本研究发现中性岩的母岩浆可以由不同成因的再循环晶与中酸性熔体混合形成。

关键词: 再循环晶, 单斜辉石, 角闪石, 穿地壳岩浆系统, 多重岩浆房

Abstract:

The trans-crustal magmatic system provides a new perspective for understanding the genesis of mineral and inter-mineral disequilibrium before consolidation. The rock-forming minerals may have experienced growth, erosion or fluid transformation in the magma chamber at different crustal levels. How to trace and sort out the evolutionary history of different rock-forming minerals has become a key scientific issue for understanding the genesis of magmatic rocks. We focus on the clinopyroxene-bearing quartz diorite and biotite diorite in the Lilong area on the southern margin of the Gangdese arc in Tibet to conduct a systematic morphological study of the main rock-forming minerals (clinopyroxene, amphibole, biotite, plagioclase, etc.), and to constrain the key elements of the trans-crustal magmatic system. According to the total REE (ΣREE) content of each mineral and the contact relationships between different minerals, clinopyroxene and amphibole in clinopyroxene-bearing quartz diorite are divided into type Ⅰ clinopyroxene (high ΣREE), type Ⅱ clinopyroxene (low ΣREE), type ⅠA amphibole (high ΣREE) and type ⅠB amphibole (low ΣREE). Amphibole in biotite diorite is classified as type Ⅱ amphibole. Thermobarometric and oxybarometric calculations yield the following results: type Ⅰ clinopyroxene: temperature 1159-1175 ℃, pressure 6.37-7.99 kbar, water content 2.5%-3.4%; type Ⅱ clinopyroxene: temperature 1180-1181 ℃, pressure 4.82-5.24 kbar, water content 2.4%-2.8%; Type ⅠA amphibole: temperature 806-854 ℃, pressure 3.20-4.34 kbar, water content 7.5%-7.9%; type ⅠB amphibole: temperature 776-848 ℃, pressure 1.96-3.86 kbar, water content 6.9%-8.6%; type Ⅱ amphibole: temperature 783-857 ℃, pressure 2.46-3.27 kbar, water content 6.5%-9.4%. The above results suggest that clinopyroxene and amphibole originate from different magmatic chambers, as the former has a higher temperature and pressure but lower water content than the latter. Based on the compositions of mineral melts at equilibria, it is inferred that clinopyroxene is derived from evolved basaltic-andesite magma, while amphibole melts, with lower Mg# value, from rhyolitic magmas. In this study, the “antecrysts” of clinopyroxene and amphibole are identified, which suggest that the magmatic process was completed in an open magmatic system, and experienced different stages of magmatic recharge or mixing events. This study also finds that intermediate magmas can be produced via mixing of antecrysts of different sources with andesitic to rhyolitic melts.

Key words: antecrysts, clinopyroxene, amphibole, trans-crustal magmatic system, multiple magma chamber

中图分类号: