地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 441-451.DOI: 10.13745/j.esf.sf.2022.9.9
杨昆昆(), 李海燕*(
), 赵汉卿, 褚润健, 刘光泓, 吴怀春, 张世红
收稿日期:
2022-05-10
修回日期:
2022-08-16
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*李海燕(1979—),女,博士,副研究员,主要从事旋回地层学和古地磁学的研究和教学工作。E-mail: 作者简介:
杨昆昆(1994—),男,博士研究生,构造地质学专业。E-mail: ykktmac@cugb.edu.cn
基金资助:
YANG Kunkun(), LI Haiyan*(
), ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong
Received:
2022-05-10
Revised:
2022-08-16
Online:
2023-05-25
Published:
2023-04-27
摘要:
旋回地层学研究目前主要集中在显生宙,对于占据地球历史绝大部分时期的前寒武纪,相关研究较为薄弱。西澳大利亚的Officer盆地具有新元古代中期(约800 Ma)良好的地层沉积记录。Lancer 1井位于Officer盆地的西部,岩心底部包含新元古代Browne组—Hussar组约750 m的连续沉积地层,岩性以砂岩和泥岩互层为主,偶见白云岩夹层,是开展前寒武纪旋回地层学研究的理想材料。本文以自然伽马测井数据作为古气候替代性指标,通过频谱分析等方法进行了旋回地层学分析,结果表明Hussar组940~1 200 m泥岩段的伽马测井数据记录了完整的米兰科维奇旋回,长偏心率、短偏心率、斜率和岁差控制的地层旋回厚度分别为34、8~10、1.8~2.7和1.2~1.4 m。以构建的长偏心率周期(405 ka)标准曲线对该泥岩段进行天文年代校准,建立了浮动天文年代标尺,估计了约800 Ma的长偏心率、短偏心率、斜率和岁差周期分别为405、127、27~34和15.2~18.1 ka。此外,根据斜率周期(27±0.7) ka计算出当时的地月距离为(362 935±1 495) km,日长为(20.56±0.2) h。这一研究将填补新元古代早—中期(约800 Ma 时期)旋回地层学研究的空白,为前寒武纪地月系统演化提供数据支持。
中图分类号:
杨昆昆, 李海燕, 赵汉卿, 褚润健, 刘光泓, 吴怀春, 张世红. 西澳大利亚新元古代Browne组—Hussar组旋回地层学研究[J]. 地学前缘, 2023, 30(3): 441-451.
YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia[J]. Earth Science Frontiers, 2023, 30(3): 441-451.
图1 Lancer 1井地质概况 a—约800 Ma全球古地理重建图(根据文献[34]修改,红色圆圈代表Lancer 1井所在位置);b—西澳大利亚区域地质简图(根据文献[33]修改);c—Lancer 1井地层柱状图(根据文献[33,35-36]修改,红色方框表示研究层位);d—研究层位岩性柱状图及其自然伽马曲线(NGR)。
Fig.1 Geological setting of well Lancer 1
图2 Browne组—Hussar组NGR序列深度域旋回分析 a—原始自然伽马曲线(NGR);b—去除70 m的rLOESS趋势后的NGR曲线(紫红色曲线为70 m的rLOESS长期趋势线);c—去趋势后NGR序列的演化能谱分析(eFFT)(滑动窗口设为60 m,步长为0.15 m);d—相关系数分析(COCO);e—演化相关系数分析(eCOCO)(沉积速率范围为1~50 cm/ka,步长为0.3 cm/ka,蒙特卡洛模拟次数为2 000。对于eCOCO分析,滑动窗口为60 m,滑动窗口步长为0.15 m。
Fig.2 Cyclostratigraphic analysis results based on NGR record for the Browne-Hussar formations
符号 | 值 | 定义 |
---|---|---|
G | 6.67408×10-11 m3/(kg·s2) | 重力常数 |
ED | 0.003273787 | 地球动力轨率 |
A | 8.008×1037 kg/m2 | 地球赤道惯性矩 |
C | 8.034×1037 kg/m2 | 地球的极惯性矩 |
5.156690° | 月球轨道在黄道面上的倾角 | |
e | 0.016708634 | 地球轨道偏心率 |
0.05554553 | 月球轨道的偏心率 | |
ε | 23.43928° | 地球倾斜度 |
a | 1.4959802×1011 m | 地球轨道的半主轴 |
3.833978×108 m | 月球轨道的半主轴 | |
1.98855×1030 kg | 太阳质量 | |
7.34767309×1022 kg | 月球质量 | |
地质历史时期地球自转速率 | ||
7.2921150×10-5 rad/s | 现在地球自转速率 | |
地质历史时期的地月距离 | ||
3.833978×108 m | 现在的地月距离 |
表1 等式中各变量的值及其定义
Table 1 Description of equation parameters used in the cyclostratigraphic analysis
符号 | 值 | 定义 |
---|---|---|
G | 6.67408×10-11 m3/(kg·s2) | 重力常数 |
ED | 0.003273787 | 地球动力轨率 |
A | 8.008×1037 kg/m2 | 地球赤道惯性矩 |
C | 8.034×1037 kg/m2 | 地球的极惯性矩 |
5.156690° | 月球轨道在黄道面上的倾角 | |
e | 0.016708634 | 地球轨道偏心率 |
0.05554553 | 月球轨道的偏心率 | |
ε | 23.43928° | 地球倾斜度 |
a | 1.4959802×1011 m | 地球轨道的半主轴 |
3.833978×108 m | 月球轨道的半主轴 | |
1.98855×1030 kg | 太阳质量 | |
7.34767309×1022 kg | 月球质量 | |
地质历史时期地球自转速率 | ||
7.2921150×10-5 rad/s | 现在地球自转速率 | |
地质历史时期的地月距离 | ||
3.833978×108 m | 现在的地月距离 |
图3 Browne组—Hussar组NGR序列分段MTM分析 Hussar组砂岩段(A段),Hussar组泥岩段(B段),Browen组砂岩段(C段)和Browen组泥岩段(D段)的MTM频谱图。
Fig.3 MTM spectra for NGR record for core sections A-D, Browne-Hussar formations
名称 | 周期/ka | NGR序列周期/m |
---|---|---|
Waltham[ | Hussar组泥岩段(B段) | |
长偏心率 | 405 | 34 |
短偏心率 | 125 95 | 8~10 |
斜率 | 28.9±5.1 | 1.8~2.7 |
岁差 | 18.9±2.2 18.1±2.0 15.8±1.6 15.9±1.6 | 1.2~1.4 |
比率 | 23∶7 ∶ 1.6 ∶1 | 24~28∶6.6~7.1∶1.5~1.9∶1 |
表2 约800 Ma天文轨道周期、Lancer 1井Hussar组泥岩段B的米兰科维奇旋回周期
Table 2 ~800 Ma Milankovitch cycles and corresponding deposition depths of mudstone interval B, Hussar Formation, well Lancer 1
名称 | 周期/ka | NGR序列周期/m |
---|---|---|
Waltham[ | Hussar组泥岩段(B段) | |
长偏心率 | 405 | 34 |
短偏心率 | 125 95 | 8~10 |
斜率 | 28.9±5.1 | 1.8~2.7 |
岁差 | 18.9±2.2 18.1±2.0 15.8±1.6 15.9±1.6 | 1.2~1.4 |
比率 | 23∶7 ∶ 1.6 ∶1 | 24~28∶6.6~7.1∶1.5~1.9∶1 |
图4 Hussar组泥岩段的NGR序列深度域滤波结果 红色线为长偏心率滤波信号(用高斯方法利用(0.029 338±0.003) cycles/m作为带通滤波参数);蓝色线为短偏心率滤波信号(用高斯方法利用(0.115 809±0.02) cycles/m作为带通滤波参数)。
Fig.4 NGR record for the mudstone interval, Hussar Formation after Gaussian filtering
图5 Hussar组泥岩段的NGR序列时间域旋回分析 a—去趋势后的NGR曲线及其滤波曲线。红色线为约405 ka滤波信号(用高斯方法利用(0.002 547 75±0.000 5)cycles/ka作为带通滤波参数),蓝色线为约125 ka滤波信号(用高斯方法利用(0.007 834 4±0.001)cycles/ka作为带通滤波参数)。b—时间域2π多窗口频谱分析(MTM)和演化能谱分析(eFFT)(滑动窗口设为500 ka,步长为2 ka)。
Fig.5 Cyclostratigraphy analysis results based on NGR record (after Gaussian filtering) for the mudstone interval of the Hussar Formation
[1] | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学: 中国地质大学学报, 2011, 36(3): 409-428. |
[2] |
HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1703-1734.
DOI URL |
[3] | 任传真, 褚润健, 吴怀春, 等. 天津蓟县剖面前寒武系洪水庄组—铁岭组米兰科维奇旋回[J]. 现代地质, 2019, 33(5): 979-989. |
[4] | 刘光泓, 张世红, 吴怀春. 前寒武纪旋回地层学研究的进展与挑战[J]. 地层学杂志, 2020, 44(3): 239-249. |
[5] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
DOI |
[6] | 吴怀春, 房强, 张世红, 等. 新生代米兰科维奇旋回与天文地质年代表[J]. 第四纪研究, 2016, 36(5): 1055-1074. |
[7] | 吴怀春, 钟阳阳, 房强, 等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报, 2017, 36(5): 750-770, 696. |
[8] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[9] |
WU H C, FANG Q, WANG X D, et al. An -34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2019, 47(1): 83-86.
DOI URL |
[10] |
FANG Q, WU H C, HINNOV L A, et al. Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 848-859.
DOI URL |
[11] |
FANG Q, WU H C, HINNOV L A, et al. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
DOI URL |
[12] |
FANG Q, WU H C, HINNOV L A, et al. Astronomical cycles of Middle Permian Maokou Formation in South China and their implications for sequence stratigraphy and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 130-139.
DOI URL |
[13] |
FANG Q, WU H C, HINNOV L A, et al. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2018, 163: 97-108.
DOI URL |
[14] |
FANG Q, WU H C, WANG X L, et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences, 2018, 156: 302-315.
DOI URL |
[15] |
FANG J C, WU H C, FANG Q, et al. Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109530.
DOI URL |
[16] |
ZHONG Y Y, WU H C, ZHANG Y D, et al. Astronomical calibration of the Middle Ordovician of the Yangtze block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 86-99.
DOI URL |
[17] |
ZHONG Y Y, WU H C, FAN J X, et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109520.
DOI URL |
[18] | 范文博. 前寒武纪旋回地层学研究进展与展望[J]. 地质科学, 2015, 50(4): 1293-1305. |
[19] |
MINGUEZ D, KODAMA K P, HILLHOUSE J W. Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA[J]. Precambrian Research, 2015, 266: 395-408.
DOI URL |
[20] |
MINGUEZ D, KODAMA K P. Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia[J]. Geology, 2017, 45(6): 567-570.
DOI URL |
[21] |
GONG Z, KODAMA K P, LI Y X. Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion[J]. Precambrian Research, 2017, 289: 62-74.
DOI URL |
[22] |
GONG Z, LI M S. Astrochronology of the Ediacaran shuram carbon isotope excursion, Oman[J]. Earth and Planetary Science Letters, 2020, 547: 116462.
DOI URL |
[23] |
SUI Y, HUANG C J, ZHANG R, et al. Astronomical time scale for the middle-upper Doushantuo Formation of Ediacaran in South China: implications for the duration of the Shuram/Wonoka negative δ13C excursion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532: 109273.
DOI URL |
[24] |
LI H Y, ZHANG S H, HAN J, et al. Astrochronologic calibration of the Shuram carbon isotope excursion with new data from South China[J]. Global and Planetary Change, 2022, 209: 103749.
DOI URL |
[25] |
BAO X J, ZHANG S H, JIANG G Q, et al. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483: 52-63.
DOI URL |
[26] |
GONG Z. Cyclostratigraphy of the Cryogenian Fiq Formation, Oman and its implications for the age of the Marinoan glaciation[J]. Global and Planetary Change, 2021, 204: 103584.
DOI URL |
[27] | BAO X, ZHAO H Q, ZHANG S H, et al. Length-of-day at ca. 1.1 Ga based on cyclostratigraphic analyses of the Nanfen Formation in the North China Craton, and its geodynamic implications[J]. Journal of the Geological Society, 2023, 180(1): 2022-022. |
[28] | ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. |
[29] |
MEYERS S R, MALINVERNO A. Proterozoic Milankovitch cycles and the history of the solar system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6363-6368.
DOI PMID |
[30] | 梅冥相, 郭庆银, 马永生. 雾迷山旋回层的基本相序模式: 兼论其马尔柯夫链分析及在长周期三级层序中的有序叠加形式[J]. 地质学报, 2001, 75(4): 476. |
[31] |
LIU G H, ZHANG S H, LI H Y, et al. Cyclostratigraphic calibration of the ca. 1.56 Ga carbon isotope excursion and oxygenation event recorded in the Gaoyuzhuang Formation, north China[J]. Global and Planetary Change, 2022, 216: 103916.
DOI URL |
[32] |
LANTINK M L, DAVIES J H F L, MASON P R D, et al. Climate control on banded iron formations linked to orbital eccentricity[J]. Nature Geoscience, 2019, 12(5): 369-374.
DOI PMID |
[33] |
PISAREVSKY S A, WINGATE M T D, STEVENS M K, et al. Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions[J]. Australian Journal of Earth Sciences, 2007, 54(4): 561-572.
DOI URL |
[34] |
XIAN H B, ZHANG S H, LI H Y, et al. Geochronological and palaeomagnetic investigation of the Madiyi Formation, lower Banxi Group, South China: implications for Rodinia reconstruction[J]. Precambrian Research, 2020, 336: 105494.
DOI URL |
[35] | MORY A J, HAINES P W. GSWA Lancer 1 well completion report (basic data) Officer and Gunbarrel Basins, Western Australia[R]. East Perth: Geological Survey of Western Australia, 2004, 10:39. |
[36] | MORY A J, HAINES P W, BACKHOUSE J. GSWA Lancer 1 well completion report (interpretive papers), Officer and Gunbarrel Basins, Western Australia[R]. East Perth: Geological Survey of Western Australia, 2005, 4: 81. |
[37] | GREY K, HOCKING R M, STEVENS M K, et al. Lithostratigraphic nomenclature of the Officer Basin and correlative parts of the Paterson Orogen, Western Australia[R]. Geological Survey of Western Australia, 2005, 93: 89. |
[38] |
PREISS W V. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction[J]. Precambrian Research, 2000, 100(1/2/3): 21-63.
DOI URL |
[39] |
LI M S, HUANG C J, OGG J, et al. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews, 2019, 189: 125-146.
DOI URL |
[40] |
WU H C, ZHANG S H, JIANG G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
DOI URL |
[41] |
WU H C, ZHANG S H, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4: 2452.
DOI PMID |
[42] |
LI M S, HUANG C J, HINNOV L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626.
DOI URL |
[43] |
WANG M, CHEN H H, HUANG C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
DOI URL |
[44] |
HUANG H, GAO Y, JONES M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735.
DOI URL |
[45] |
VAN VUGT N, LANGEREIS C G, HILGEN F J. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(3/4): 193-205.
DOI URL |
[46] |
MEYERS S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223.
DOI |
[47] |
THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
DOI URL |
[48] |
MANN M E, LEES J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
DOI URL |
[49] | KODAMA K P, HINNOV L A. New analytical methods in earth and environmental science series[M]// Rock magnetic cyclostratigraphy. Hoboken: John Wiley and Sons, 2014. |
[50] |
LI M S, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
DOI URL |
[51] | LI M S, HINNOV L, KUMP L. A cycle: time-series analysis software for paleoclimate research and education[J]. Computers and Geosciences, 2019, 127(C): 12-22. |
[52] |
BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566.
DOI URL |
[53] |
LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285.
DOI URL |
[54] |
WILLIAMS G E. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit[J]. Reviews of Geophysics, 2000, 38(1): 37-59.
DOI URL |
[55] | HINNOV L A. Cyclostratigraphy and astrochronology in 2018[J]. Stratigraphy and Timescales, 2018, 3: 1-80. |
[56] |
ZHANG T, LI Y F, FAN T L, et al. Orbitally-paced climate change in the early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420.
DOI URL |
[57] | BERGER A, LOUTRE M F. Astronomical forcing through geological time[M]// Orbital forcing and cyclic sequences. Oxford, UK: Blackwell Publishing Ltd, 2009: 15-24. |
[58] |
WALTHAM D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
DOI URL |
[59] | HINNOV L A, HILGEN F J. Cyclostratigraphy and astrochronology[M]// The geologic time scale. Amsterdam: Elsevier, 2012: 63-83. |
[60] | THOMSON D J. Time-series analysis of paleoclimate data[M]// GORNITZ V. Encyclopedia paleoclimatology and ancient environments. Dordrecht: Springer, 2009: 949-959. |
[1] | 翟明国, 胡波, 彭澎, 赵太平. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 20140101, 21(1): 100-119. |
[2] | 李光洁, 陈永清, 尚志, 刘世博. 扬子地块西缘峨山新元古代高分异I型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
[3] | 吴怀春, 李山, 王成善, 褚润健, 王璞珺, 高远, 万晓樵, 贺怀宇, 邓成龙, 杨光, 黄永建, 高有峰, 席党鹏, 王天天, 房强, 杨天水, 张世红. 松辽盆地白垩纪综合年代地层格架[J]. 地学前缘, 2024, 31(1): 431-445. |
[4] | 石巨业, 金之钧, 刘全有, 樊太亮, 高志前, 王宏语. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘, 2023, 30(4): 142-151. |
[5] | 何碧竹, 焦存礼, 刘若涵, 曹自成, 蔡志慧, 兰明杰, 贠晓瑞, 朱定, 姜忠正, 杨玉杰, 李振宇. 塔里木盆地新元古代构造古地理及深层有利烃源岩发育区预测[J]. 地学前缘, 2023, 30(4): 19-42. |
[6] | 刘磊鑫, 李江海, 马昌明. 扬子板块、澳大利亚板块、印度板块在新元古代晚期(750~540 Ma)古板块再造:来自古地磁制约[J]. 地学前缘, 2023, 30(2): 154-162. |
[7] | 李路顺, 汪泽成, 肖安成, 胡安平, 陈友智, 王芊芊. 扬子板块北缘新元古代盆地结构与马槽园群归属研究[J]. 地学前缘, 2022, 29(6): 291-304. |
[8] | 李王鹏, 李慧莉, 王毅, 刘少峰, 张仲培, 杨伟利, 蔡习尧, 钱涛, 李晓剑. 塔里木盆地西南缘叶城地区新元古代冰期事件[J]. 地学前缘, 2022, 29(3): 356-380. |
[9] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[10] | 张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义:从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266. |
[11] | 华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航. 新元古代末期高家山生物群的生态多样性[J]. 地学前缘, 2020, 27(6): 28-46. |
[12] | 彭润民, 王建平. 华北克拉通北缘西段新元古代裂谷的确认与成矿[J]. 地学前缘, 2020, 27(2): 420-441. |
[13] | 马雪莹, 邓胜徽, 卢远征, 吴怀春, 罗忠, 樊茹, 李鑫, 房强. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘, 2019, 26(2): 281-291. |
[14] | 包洪平,邵东波,郝松立,章贵松,阮正中,刘刚,欧阳征健. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019, 26(1): 33-43. |
[15] | 李鹏,刘善宝,李建康,施光海. 马达加斯加Bemavo铬铁矿区基性岩中锆石的U-Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 2017, 24(5): 182-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||