地学前缘 ›› 2022, Vol. 29 ›› Issue (3): 356-380.DOI: 10.13745/j.esf.sf.2021.6.30
李王鹏1(), 李慧莉1, 王毅1, 刘少峰2, 张仲培1, 杨伟利1, 蔡习尧1, 钱涛3, 李晓剑4
收稿日期:
2021-03-22
修回日期:
2021-06-30
出版日期:
2022-05-25
发布日期:
2022-04-28
作者简介:
李王鹏(1986—),男,博士,副研究员,构造地质学专业,主要从事含油气盆地构造分析及新元古代冰期事件等方面研究。E-mail: liwp.syky@sinopec.com
基金资助:
LI Wangpeng1(), LI Huili1, WANG Yi1, LIU Shaofeng2, ZHANG Zhongpei1, YANG Weili1, CAI Xiyao1, QIAN Tao3, LI Xiaojian4
Received:
2021-03-22
Revised:
2021-06-30
Online:
2022-05-25
Published:
2022-04-28
摘要:
新元古代冰期事件记录了“雪球地球”事件重要的地质信息。塔里木盆地周缘新元古代冰碛岩地层露头发育,是研究新元古代冰期事件的理想基地。由于发育多套新元古代火山岩,盆地东北缘库鲁克塔格地区新元古代冰碛岩地层时代已获得较多年代学数据约束;但盆地周缘其他地区新元古代冰碛岩地层公开报道年代学数据较少,不能准确限定其沉积时代,导致冰期事件对比存在争论。为此,本文选择塔里木盆地研究程度较低的西南缘叶城地区新元古代冰碛岩地层,开展岩石学、同位素年代学、岩石地球化学等研究,明确其冰期沉积特征,约束其沉积时代,开展冰期事件对比,讨论古气候风化条件等。南华系波龙组和雨塘组冰碛岩地层具有较低的化学蚀变指数(CIA),分别代表新元古代2次寒冷的冰川气候记录。冰川沉积及其相邻层位的碎屑锆石U-Pb年代学数据显示,波龙冰期的起始年龄晚于(710±13) Ma,与全球Sturtian冰期对应;雨塘冰期的起始年龄不会早于(656±18) Ma,其结束年龄可被南华系顶界年龄635 Ma或上覆震旦系库尔卡克组碎屑锆石年龄(634±9) Ma限定,与全球Marinoan冰期对应。
中图分类号:
李王鹏, 李慧莉, 王毅, 刘少峰, 张仲培, 杨伟利, 蔡习尧, 钱涛, 李晓剑. 塔里木盆地西南缘叶城地区新元古代冰期事件[J]. 地学前缘, 2022, 29(3): 356-380.
LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 356-380.
图3 叶城地区新元古界野外露头 a—波龙组冰碛岩与灰绿色硅质泥岩互层;b—波龙组冰碛岩中花岗质砾石;c—波龙组冰碛岩中燧石砾石;d—波龙组冰碛岩砾石发育冻裂纹;e—雨塘组冰碛岩层;f—克孜苏胡木组与塔哈奇组不整合接触。
Fig.3 Field photos of Neoproterozoic outcrops in the Yecheng area
图6 叶城地区新元古界样品A-CN-K三角图(底图据文献[36]) A—x(Al2O3);CN—x(CaO*+Na2O);K—x(K2O)。Ka—高岭石;Gi—水铝石;Chl—绿泥石;Sm—蒙脱石;Ill—伊利石;Ms—白云母;Pl—斜长石;Kfs—钾长石;Cpx—单斜辉石;Hbl—普通角闪石;T—英云闪长岩;Gd—花岗闪长岩;G—花岗岩。
Fig.6 A-CN-K diagram for the Neoproterozoic outcrops in Yecheng area. Adapted from [36].
中国主要地区 | Gaskies冰期 (583.7582.1 Ma) | Marinoan冰期 (651635 Ma) | Sturtian冰期 (718660 Ma) | Kaigas冰期 (757741 Ma) | |
---|---|---|---|---|---|
塔里木 盆地 | 库鲁克塔格地区[ | 汉格尔乔克冰期 (615±6)(541±1) Ma | 特瑞爱肯冰期 (642±8)(617±6) Ma | 阿勒通沟冰期 (725±7)(655±4) Ma | 贝义西冰期 (740±7)(732±7) Ma |
阿克苏地区[ | 尤尔美那克冰期 (719±7)(615±5) Ma | 巧恩布拉克冰期 (727±8)?Ma | |||
叶城地区(本文) | 雨塘冰期 (656±18)635 Ma | 波龙冰期 (710±13)?Ma | |||
华南地区[ | 南沱冰期 (655±4)635 Ma | 江口冰期 (716±3)(663±4) Ma | |||
华北地区 | 罗圈冰期 |
表6 新元古代冰期事件对比
Table 6 Comparison of Neoproterozoic glaciations
中国主要地区 | Gaskies冰期 (583.7582.1 Ma) | Marinoan冰期 (651635 Ma) | Sturtian冰期 (718660 Ma) | Kaigas冰期 (757741 Ma) | |
---|---|---|---|---|---|
塔里木 盆地 | 库鲁克塔格地区[ | 汉格尔乔克冰期 (615±6)(541±1) Ma | 特瑞爱肯冰期 (642±8)(617±6) Ma | 阿勒通沟冰期 (725±7)(655±4) Ma | 贝义西冰期 (740±7)(732±7) Ma |
阿克苏地区[ | 尤尔美那克冰期 (719±7)(615±5) Ma | 巧恩布拉克冰期 (727±8)?Ma | |||
叶城地区(本文) | 雨塘冰期 (656±18)635 Ma | 波龙冰期 (710±13)?Ma | |||
华南地区[ | 南沱冰期 (655±4)635 Ma | 江口冰期 (716±3)(663±4) Ma | |||
华北地区 | 罗圈冰期 |
[1] |
KERR R A. An appealing snowball Earth that’s still hard to swallow[J]. Science, 2000, 287(5459): 1734-1736.
DOI URL |
[2] | 周传明, 袁训来, 肖书海, 等. 中国埃迪卡拉纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 7-25. |
[3] | 刘兵, 徐备, 孟祥英, 等. 塔里木板块新元古代地层化学蚀变指数研究及其意义[J]. 岩石学报, 2007, 23(7): 1664-1670. |
[4] | 寇晓威, 王宇, 卫巍, 等. 塔里木板块上元古界阿勒通沟组和黄羊沟组: 新识别的冰期和间冰期?[J]. 岩石学报, 2008, 24(12): 2863-2868. |
[5] | 高林志, 王宗起, 许志琴, 等. 塔里木盆地库鲁克塔格地区新元古代冰碛岩锆石SHRIMP U-Pb年龄新证据[J]. 地质通报, 2010, 29(2/3): 205-213. |
[6] | 高林志, 郭宪璞, 丁孝忠, 等. 中国塔里木板块南华纪成冰事件及其地层对比[J]. 地球学报, 2013, 34(1): 39-57. |
[7] | 高振家, 李永安, 钱建新, 等. 新疆阿克苏-柯坪地区震旦系冰川沉积的新资料[J]. 中国地质科学院天津地质矿产研究所所刊, 1982, 5: 43-56. |
[8] | 王宇, 何金有, 卫巍, 等. 新疆阿克苏地区新元古代晚期地层沉积相及层序地层研究[J]. 岩石学报, 2010, 26(8): 2519-2528. |
[9] | 宗文明, 高林志, 丁孝忠, 等. 塔里木盆地西南缘南华纪冰碛岩特征与地层对比[J]. 中国地质, 2010, 37(4): 1183-1190. |
[10] | 丁海峰. 新疆北部新元古代冰期沉积的岩石地球化学和碎屑锆石年代学研究[D]. 南京: 南京大学, 2012. |
[11] | 童勤龙, 卫魏, 徐备. 塔里木板块西南缘新元古代沉积相和冰期划分[J]. 中国科学: 地球科学, 2013, 43(5): 703-715. |
[12] | 丁海峰, 马东升, 姚春彦, 等. 新疆阿克苏地区新元古代冰成沉积地球化学研究[J]. 地球化学, 2014, 43(3): 224-237. |
[13] |
WEN B, EVANS D A D, LI Y X, et al. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: stratigraphy, geochemistry, and paleoenvironment[J]. Precambrian Research, 2015, 271: 278-294.
DOI URL |
[14] |
WU G H, LE HERON D P, YANG L Y, et al. Cryptic climatic signatures and tectonic controls on Cryogenian diamictites in the NW Tarim Craton, China[J]. Journal of the Geological Society, 2018, 175(4): 642-658.
DOI URL |
[15] | 徐备, 寇晓威, 宋彪, 等. 塔里木板块上元古界火山岩SHRIMP定年及其对新元古代冰期时代的制约[J]. 岩石学报, 2008, 24(12): 2857-2862. |
[16] |
XU B, JIAN P, ZHENG H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of Northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J]. Precambrian Research, 2005, 136(2): 107-123.
DOI URL |
[17] |
XU B, XIAO S H, ZHOU H B, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research, 2009, 168(3/4): 247-258.
DOI URL |
[18] | 何景文. 塔里木克拉通北缘与伊犁块体新元古代冰碛岩地层对比研究[D]. 南京: 南京大学, 2015. |
[19] | 罗志文, 徐备, 何金有. 新疆库鲁克塔格地区特瑞艾肯冰期时代的碎屑锆石年代学制约[J]. 北京大学学报(自然科学版), 2016, 52(3): 467-474. |
[20] |
ZHANG Z C, KANG J L, KUSKY T, et al. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, Northwest Tarim Block, China: implications for the onset of Rodinia supercontinent breakup[J]. Precambrian Research, 2012, 220/221: 158-176.
DOI URL |
[21] |
XU B, ZOU H B, CHEN Y, et al. The Sugetbrak basalts from northwestern Tarim Block of Northwest China: geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236: 214-226.
DOI URL |
[22] |
ZHU W B, ZHENG B H, SHU L S, et al. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J]. Precambrian Research, 2011, 185(3/4): 215-230.
DOI URL |
[23] |
HE J W, ZHU W B, GE R F, et al. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: implications for supercontinent reconstruction and crustal evolution[J]. Precambrian Research, 2014, 254: 194-209.
DOI URL |
[24] | 何金有, 徐备, 孟祥英, 等. 新疆库鲁克塔格地区新元古代层序地层学研究及对比[J]. 岩石学报, 2007, 23(7): 1645-1654. |
[25] | 徐备, 郑海飞, 姚海涛, 等. 塔里木板块震旦系碳同位素组成及其意义[J]. 科学通报, 2002, 47(22): 1740-1744. |
[26] |
XIAO S H, BAO H M, WANG H F, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation[J]. Precambrian Research, 2004, 130: 1-26.
DOI URL |
[27] | 温斌. 塔里木板块新元古代构造-气候演化: 对Rodinia超大陆和“雪球地球”事件的新认识[D]. 南京: 南京大学, 2016. |
[28] |
CONDON D J, ZHU M Y, BOWRING S, et al. U-Pb ages from the Neoproterzoic Doushantuo Formation, China[J]. Science, 2005, 308(5718): 95-98.
DOI URL |
[29] | 李王鹏, 王毅, 李慧莉, 等. 塔里木地块西北缘阿克苏地区新元古代冰碛岩年代与冰期事件[J]. 现代地质, 2022, 36(1): 27-47. |
[30] |
SLÁMA J, KOSšLER J, CONDON D J, et al. Plešovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
DOI URL |
[31] |
JACKSON S E, PEARSON N J, GRIFFIN W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.
DOI URL |
[32] |
ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
DOI URL |
[33] | LUDWIG K R. Isoplot 3.0: a geochronological tool kit for Microsoft excel[M]. Berkeley: Geochronology Center Special Publication, 2003: 1-70. |
[34] | WEDEPOHL K H. Handbook of Geochemistry[M]. Berlin: Springer, 1969: 248. |
[35] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
DOI URL |
[36] |
FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
DOI URL |
[37] | 冯连君, 储雪蕾, 张同钢, 等. 莲沱砂岩:南华大冰期前气候转冷的沉积记录[J]. 岩石学报, 2006, 22(9): 2387-2393. |
[38] |
COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
DOI URL |
[39] |
CULLERS R L, PODKOVYROV V N.The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia[J]. Precambrian Research, 2002, 117(3/4): 157-183.
DOI URL |
[40] |
PANAHI A, YOUNG G M, RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
DOI URL |
[41] | 马世鹏, 汪玉珍, 方锡廉. 西昆仑山北坡的震旦系[J]. 新疆地质, 1989, 7(4): 68-79,94. |
[42] |
YOUNG G M. Geochemical investigation of a Neoproterozoic glacial unit: the Mineral Fork Formation in the Wasatch Range, Utah[J]. Geological Society of America Bulletin, 2002, 114(4): 387-399.
DOI URL |
[43] |
RIEU R, ALLEN P A, PLOTZE M, et al. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, South Oman: implications for paleoweathering conditions[J]. Precambrian Research, 2007, 154(3/4): 248-265.
DOI URL |
[44] | 李秋根, 刘树文, 韩宝福, 等. 新疆库鲁克塔格震旦系冰碛岩的地球化学特征及其对物源区的指示[J]. 自然科学进展, 2004, 14(9): 999-1005. |
[45] |
ZHANG C L, LI X H, LI Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: geochronology, geochemistry and tectonic implications[J]. Precambrian Research, 2007, 152(3/4): 149-169.
DOI URL |
[46] | 冯连君, 储雪蕾, 张启锐, 等. 湘西北南华系渫水河组寒冷气候成因的新证据[J]. 科学通报, 2004, 49(12): 1172-1178. |
[47] |
LINNEMANN U, PIDAL A P, HOFMANN M, et al. A 565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa[J]. International Journal of Earth Sciences, 2018, 107(3): 885-911.
DOI URL |
[48] | 赵文智, 王晓梅, 胡素云, 等. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科学: 地球科学, 2019, 49(6): 939-964. |
[49] |
CHEN Y, XU B, ZHAN S, et al. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications[J]. Precambrian Research, 2004, 133(3/4): 271-281.
DOI URL |
[50] |
HUANG B C, XU B, ZHANG C X, et al. Paleomagnetism of the Baiyisi volcanic rocks (ca.740 Ma) of Tarim, Northwest China: a continental fragment of Neoproterozoic western Australia?[J]Precambrian Research, 2005, 142(3/4): 83-92.
DOI URL |
[51] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[52] |
ZHAN S, CHEN Y, XU B, et al. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim Basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis[J]. Precambrian Research, 2007, 154(3/4): 143-158.
DOI URL |
[53] | 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565. |
[54] | 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. |
[55] | 王自强, 尹崇玉, 高林志, 等. 用化学地层学研究新元古代地层划分和对比[J]. 地学前缘, 2006, 13(6): 268-279. |
[56] |
ZHENG Y F, GONG B, ZHAO Z F, et al. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in South China: implications for the snowball Earth event[J]. American Journal of Science, 2008, 308(4): 484-516.
DOI URL |
[57] | ZHANG Q R, CHU X L, FENG L J. Discussion on the Neoproterozoic glaciations in the South China Block and their related paleolatitudes[J]. Chinese Science Bulletin, 2009, 54(10): 1797-1800. |
[58] | 张启锐, 储雪蕾. 扬子地区江口冰期地层的划分对比与南华系层型剖面[J]. 地层学杂志, 2006, 30(4): 306-314. |
[59] |
ZHANG Q R, LI X H, FENG L J, et al. A new age constraint on the onset of the Neoproteorzoic glaciations in the Yangtze platform, South China[J]. The Journal of Geology, 2008, 116(4): 423-429.
DOI URL |
[60] |
LAN Z W, LI X H, ZHU M Y, et al. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 2014, 255: 401-411.
DOI URL |
[61] |
ZHOU C M, TUCKER R, XIAO S H, et al. New constraints on the ages of Neoproterozoic glaciations in South China[J]. Geology, 2004, 32(5): 437-440.
DOI URL |
[62] | 尹崇玉, 王砚耕, 唐烽, 等. 贵州松桃南华系大塘坡组凝灰岩锆石SHRIMPⅡU-Pb年龄[J]. 地质学报, 2006, 80(2): 273-278. |
[63] |
ZHANG S H, JIANG G Q, HAN Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4): 289-294.
DOI URL |
[64] | 何景文. 塔里木库鲁克塔格地区新元古代冰期和前寒武纪地壳演化的初步探讨[D]. 南京: 南京大学, 2012. |
[65] |
KNOLL A H, HAYES J M, KAUFMAN A J, et al. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland[J]. Nature, 1986, 321(6073): 832-838.
DOI URL |
[66] |
KAUFMAN A J, KNOLL A H, NARBONNE G M. Isotopes, ice ages, and terminal Proterozoic earth history[J]. PNAS, 1997, 94(13): 6600-6605.
DOI URL |
[67] |
WALTER M R, VEEVERS J J, CALVER C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precambrian Research, 2000, 100(1/2/3): 371-433.
DOI URL |
[68] |
MCKIRDY D M, BURGESS J M, LEMON N M, et al. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia[J]. Precambrian Research, 2001, 106(1/2): 149-186.
DOI URL |
[69] |
HOFFMAN P F, SCHRAG D P. The snowball Earth hypothesis: testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155.
DOI URL |
[70] |
DING H F, MA D S, LIN Q Z, et al. Age and nature of Cryogenian diamictites at Aksu, Northwest China: implications for Sturtian tectonics and climate[J]. International Geology Review, 2015, 57(16): 2044-2064.
DOI URL |
[71] | 张启锐, 刘鸿允, 陈孟莪, 等. 皖南震旦系冰期地层的再认识[J]. 地层学杂志, 1993, 17(3): 186-193, 241. |
[72] |
ROONEY A D, YANG C, CONDON D J, et al. U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian snowball Earth aftermath[J]. Geology, 2020, 48(6): 625-629.
DOI URL |
[73] | 储雪蕾, TODT W, 张启锐, 等. 南华-震旦系界线的锆石U-Pb年龄[J]. 科学通报, 2005, 50(6): 600-602. |
[74] | 尹崇玉, 唐烽, 柳永清, 等. 长江三峡地区埃迪卡拉(震旦)系锆石U-Pb新年龄对庙河生物群和马雷诺冰期时限的限定[J]. 地质通报, 2005, 24(5): 393-400. |
[75] |
HOFFMANN K H, CONDON D J, BOWRING S A, et al. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation[J]. Geology, 2004, 32(9): 817-820.
DOI URL |
[76] |
SHEN B, XIAO S H, KAUFMAN A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from Northwest China[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 209-228.
DOI URL |
[77] | BOWRING S A, MYROW P M, LANDING E, et al. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoan[J]. Geophysical Research Abstracts, 2003, 5: 13219. |
[78] |
HOFFMAN P F, LI Z X. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277(3/4): 158-172.
DOI URL |
[79] |
MYROW P M, KAUFMAN A J. A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada[J]. Journal of Sedimentary Research, 1999, 69(3): 784-793.
DOI URL |
[80] |
CALVER C R. Isotope stratigraphy of the Ediacarian (NeoproterozoicⅢ) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification[J]. Precambrian Research, 2000, 100(1/2/3): 121-150.
DOI URL |
[81] |
CORSETTI F A, KAUFMAN A J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California[J]. Geological Society of America Bulletin, 2003, 115(8): 916-932.
DOI URL |
[82] |
FIKE D A, GROTZINGER J P, PRATT L M, et al. Oxidation of the Ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747.
DOI URL |
[83] |
LE GUERROUÉ E, ALLEN P A, COZZI A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation Nafun Group, Oman)[J]. Precambrian Research, 2006, 146(1/2): 68-92.
DOI URL |
[84] |
JIANG G Q, KAUFMAN A J, CHRISTIE-BLICK N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.
DOI URL |
[85] |
ZHU M Y, ZHANG J M, YANG A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 7-61.
DOI URL |
[86] |
DERRY L A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly[J]. Earth and Planetary Science Letters, 2010, 294(1/2): 152-162.
DOI URL |
[87] |
MELEZHIK V, FALLICK A E, POKROVSKY B G. Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle[J]. Precambrian Research, 2005, 137(3/4): 131-165.
DOI URL |
[88] |
LE GUERROUÉ E, COZZI A. Veracity of Neoproterozoic negative C-isotope values: the termination of the Shuram negative excursion[J]. Gondwana Research, 2010, 17(4): 653-661.
DOI URL |
[89] |
LE GUERROUÉ E. Duration and synchroneity of the largest negative carbon isotope excursion on Earth: the Shuram/Wonoka anomaly[J]. Comptes Rendus Geoscience, 2010, 342(3): 204-214.
DOI URL |
[90] |
ZHAO Y Y, ZHENG Y F. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China[J]. Chemical Geology, 2010, 271(1/2): 86-100.
DOI URL |
[91] |
JIANG G Q, KENNEDY M J, CHRISTIE-BLICK N, et al. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China[J]. Journal of Sedimentary Research, 2006, 76(7): 978-995.
DOI URL |
[92] |
ZHAO Y Y, ZHENG Y F, CHEN F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362.
DOI URL |
[93] | 孙枢, 王铁冠. 中国东部中-新元古界地质学与油气资源[M]. 北京: 科学出版社, 2016. |
[94] |
KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
DOI URL |
[95] |
KENNEDY M J, RUNNEGAR B, PRAVE A R, et al. Two or four Neoproterozoic glaciations?[J]. Geology, 1998, 26(12): 1059-1063.
DOI URL |
[96] |
HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A Neoproterozoic snowball Earth[J]. Science, 1998, 281(5381): 1342-1346.
DOI URL |
[1] | 翟明国, 胡波, 彭澎, 赵太平. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 20140101, 21(1): 100-119. |
[2] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[3] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[4] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[5] | 李光洁, 陈永清, 尚志, 刘世博. 扬子地块西缘峨山新元古代高分异I型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
[6] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[7] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[8] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[9] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[10] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[11] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
[12] | 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262. |
[13] | 朱秀香, 曹自成, 隆辉, 曾溅辉, 黄诚, 陈绪云. 塔里木盆地顺北地区走滑断裂带压扭段和张扭段油气成藏实验模拟及成藏特征研究[J]. 地学前缘, 2023, 30(6): 289-304. |
[14] | 李慧莉, 高键, 曹自成, 朱秀香, 郭小文, 曾帅. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义[J]. 地学前缘, 2023, 30(6): 316-328. |
[15] | 陈强路, 马中良, 黎茂稳, 席斌斌, 郑伦举, 庄新兵, 袁坤, 马晓潇, 许锦. 塔里木盆地北部奥陶系超深层液态烃演化与保存机制:来自模拟实验的证据[J]. 地学前缘, 2023, 30(6): 329-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||