地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 276-293.DOI: 10.13745/j.esf.sf.2020.3.22
李文渊1,2(), 王亚磊1,2, 钱兵1,2, 刘月高1,2,3, 韩一筱4
收稿日期:
2019-07-15
修回日期:
2020-01-22
出版日期:
2020-03-25
发布日期:
2020-03-25
作者简介:
李文渊(1962—),男,博士,研究员,博士生导师,主要从事岩浆作用与成矿及区域成矿研究工作。E-mail: xalwenyuan@126.com
基金资助:
LI Wenyuan1,2(), WANG Yalei1,2, QIAN Bing1,2, LIU Yuegao1,2,3, HAN Yixiao4
Received:
2019-07-15
Revised:
2020-01-22
Online:
2020-03-25
Published:
2020-03-25
摘要:
因新发现的夏日哈木超大型岩浆铜镍钴硫化物矿床成岩成矿研究存在争议,对岩浆铜镍钴硫化物矿床的成因机制又引发新一轮的关注。中国造山带中铜镍钴硫化物矿床具有鲜明的分布特点,20世纪80年代东天山黄山东等一批岩浆铜镍钴硫化物矿床的发现,曾经提出蛇绿岩形成铜镍钴硫化物矿床的观点,而后出现了洋壳削减闭合陆-陆碰撞后新生陆壳裂陷槽环境形成铜镍钴矿的主流认识;进入21世纪后,随着塔里木早二叠世大火成岩省的提出,开始将东天山和新疆北山的岩浆铜镍钴硫化物矿床与塔里木大火成岩省的形成关联起来,并认为是地幔柱作用的结果。但随着研究的深入,由于含铜镍钴镁铁-超镁铁岩地球化学具有典型的岛弧特征,又将东天山铜镍钴矿床的形成与俯冲削减的板片再次联系了起来,导致岩浆型铜镍钴硫化物矿床形成背景还存在较大争议。我们认为岩石微量元素显示岛弧信息,是俯冲交代及地壳混染引起的地球化学屏蔽效应;铬尖晶石成分及所反映的氧逸度环境指示为张性环境,而非岛弧。塔里木陆块周缘3期岩浆铜镍钴硫化物矿床成矿代表了中国最重要的3期成镍事件,实际反映了塔里木陆块在全球大陆聚散演化中与超大陆之间关键的聚散事件:(1)新元古代金川Cu-Ni-PGE矿成矿代表了由于地幔柱作用以塔里木、扬子和西澳大利亚陆块之间的裂解为起点的罗迪尼亚超大陆裂解事件,直至早古生代形成原特提斯洋-古亚洲洋;(2)早古生代末夏日哈木Ni-Co矿则是代表冈瓦纳大陆南部裂解从而形成古特提斯洋的标志性事件;(3)晚古生代早二叠世坡一Cu-Ni矿应是地幔柱作用潘吉亚超大陆生长大火成岩省的深成相组成。本文系统总结了3个矿床的成矿特征,并对比了3个矿床的区别。尽管坡一在3个矿床中有基性程度最高的母岩浆,但坡一相对于夏日哈木、金川显示出低的地壳混染程度,特别是地壳硫混染程度,这可能是坡一成矿相对差的主要原因。此外坡一不仅地壳混染程度低,且其混染了较多的钙质,抑制了硫化物饱和。
中图分类号:
李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 27(2): 276-293.
LI Wenyuan, WANG Yalei, QIAN Bing, LIU Yuegao, HAN Yixiao. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block[J]. Earth Science Frontiers, 2020, 27(2): 276-293.
图1 塔里木陆块周缘构造简图及岩浆铜镍钴铂族硫化物矿床地质分布图 1—古生代岩石;2—新元古代岩石;3—中元古代岩石;4—古元古代岩石;5—太古宙岩石;6—新元古代花岗岩;7—断层;8—推测断层;9—南华—震旦纪冰积岩;10—第四纪荒漠和沉积物;11—基性岩墙群;12—地块;13—断裂;14—推测断裂;15—青海湖;16—地名;17—岩浆铜镍钴硫化物矿床。
Fig.1 Schematic map of tectonics at peripheries of Tarim Block and geological distribution of magmatic Cu-Ni-Co-PGE sulfide deposits
图2 金川巨型Cu-Ni-Co-PGE硫化物矿床地质简图(a)及勘探线剖面图(b)(据文献[5]) 1—第四系;2—前震旦系;3—二辉橄榄岩;4—含长二辉橄榄岩;5—橄榄二辉岩;6—二辉岩;7—浸染状矿体;8—海绵陨铁状矿体;9—氧化矿体;10—交代矿体;11—块状硫化物矿体;12—断层;13—勘探线。
Fig.2 Simplified geological map of Jinchuan giant Cu-Ni-Co-PGE sulfide deposit (a) and prospecting line profile (b). Adapted from [5].
图3 夏日哈木矿区(a)、Ⅰ号岩体地质图(b)及夏日哈木Ni-Co矿床纵剖面图(c)(图a据文献[12];图b据文献[56],新元古代年龄据文献[11,57],基性-超基性岩体年龄据文献[7,9];图c据文献[8]) 1—第四系;2—元古宙花岗片麻岩;3—元古宙白云质大理岩;4—榴辉岩;5—地幔橄榄岩;6—纯橄岩;7—方辉橄榄岩;8—单辉橄榄岩;9—斜方辉石岩和二辉岩;10—辉长苏长岩或辉长岩;11—斜长岩;12—基性岩脉;13—花岗岩或花岗岩脉;14—断层或推测断层;15—氧化矿体;16—镍矿体编号;17—测年位置及年龄;18—钻孔位置及编号;19—勘探线编号。
Fig.3 Geological map of Xiarihamu mining area (a) and No.1 rock mass (b),and longitudinal section of Xiarihamu Ni-Co deposit (c)
图4 坡北岩体群地质图(a)、坡一Cu-Ni矿区地质图(b)及坡一矿区主勘探线剖面图(c)(图a:坡北岩体群地质简图据文献[13],磁铁辉长岩锆石U-Pb年龄据文献[13],坡一岩体辉长岩锆石SHRIMP U-Pb 年龄据文献[59],中坡山北岩体角闪辉长岩锆石U-Pb年龄据文献[16];图b:坡一铜镍矿地质图据文献[60];图c:坡一主勘探线(22线)剖面图据文献[58]) 1—古元古代北山群;2—中元古代白湖群;3—中元古代蚕头山群;4—元古宙花岗片麻岩;5—元古宙大理岩;6—元古宙黑云石英片岩;7—下石炭统红柳园组;8—下石炭统石板山组;9—淡色辉长岩;10—磁铁辉长岩;11—辉长岩;12—橄榄苏长辉长岩;13—纯橄岩;14—角闪橄榄岩;15—单辉橄榄岩;16—单辉岩;17—橄榄辉长岩;18—二叠纪闪长岩;19—二叠纪石英闪长岩;20—区域大断裂;21—小型断裂;22—铜镍矿床;23—磁铁矿矿点;24—镍矿体(w(Ni)>0.4%);25—钻孔及编号。
Fig.4 Geological map of Pobei pluton group (a),geological map of Poyi Cu-Ni deposit (b), and main prospecting section of Poyi deposit (c)
矿床名称 | 成矿背景 | 容矿围岩 | 镁铁-超镁铁岩 | 矿石类型 | 主要矿物组合 | 成矿元素基本特征 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni品位 | Cu品位 | Ni/Cu | PGE含量 | |||||||||||||
金川 | 新元古代与Rodinia超大裂解相关的拉张环境 | 古元古界 白家咀子组 | 纯橄岩、二辉橄榄岩、橄榄辉石岩和少量斜长二辉橄榄岩 | 海绵陨铁状、星点状、少量块状矿石、浸染状和变余海绵陨铁状 | 磁黄铁矿、镍黄铁矿和黄铜矿、砷铂矿、自然铂、锑铂矿、锑钯铂矿、碲铂矿、铋碲镍铂矿、碲铋钯矿、铋碲镍钯矿 | 平均1.05% | 平均0.68% | 平均1.54 | 富集PGE,局部Pd、Pt可高达1~2 g/t | |||||||
夏日哈木 | 早古生代晚期原特提斯—古特提斯构造转换裂解背景 | 新元古代 花岗片麻岩 | 纯橄岩、方辉橄榄岩、二辉橄榄岩、单辉橄榄岩、斜方辉石岩、辉长苏长岩、辉长岩 | 斑杂状、浸染状、海绵陨铁状、星点状和少量块状 | 磁黄铁矿、镍黄铁矿和黄铜矿 | 平均0.68% | 0.14% | 平均4.86 | (0.09~349)×10-9 | |||||||
坡一 | 早二叠世塔里木地幔柱作用下裂解背景 | 中元古界 白湖群 | 纯橄岩、角闪橄榄岩、单辉橄榄岩、单辉岩、橄榄辉长岩、辉长岩等 | 稀疏浸染状、星点状、局部偶见块状 | 磁黄铁矿、镍黄铁矿和黄铜矿 | 0.2%~0.6%,少数为0.6%~0.9%,极个别可达1%以上 | <0.15% | 平均2.5~3 | (0.19~404.17)×10-9 | |||||||
矿床名称 | 岩石地球 化学m/f | 矿物学指标 | 同位素特征 | 母岩浆中 w(MgO) | ||||||||||||
橄榄石Fo | 橄榄石Ni | 铬尖晶石Cr# | 铬尖晶石 Fe3+/∑Fe | εNd(t) | δ34S | Δ33S | ||||||||||
金川 | 2.0~6.5 | 80.0~85.7 | (1 396~2 500)×10-6 | 0.32~0.99 | -9.20~-10.54 | -1.19‰~8.00‰ | -0.01‰~2.67‰ | 11.79%~12.90% | ||||||||
夏日哈木 | 0.80~6.67 | 83.0~90.8 | (558~4 370)×10-6 | 0.15~0.61 | 0.003~0.295 | -1.97~-5.74 | 2.2‰~7.7‰ | 8.58%~9.79% | ||||||||
坡一 | 2.83~8.49 | 84.5~89.7 | 639~4 354 | 0.35~0.83 | 0.076~0.309 | -1.79~6.63 | -0.3‰~-3.5‰ | 0.004‰~0.221‰ | 12.26%~14.91% |
表1 塔里木周缘3期岩浆铜镍钴铂族硫化物矿床特征对比一览表
Table 1 Characteristics comparison of three-period magmatic copper-nickel-cobalt-platinum sulfide deposits in the periphery of Tarim Block
矿床名称 | 成矿背景 | 容矿围岩 | 镁铁-超镁铁岩 | 矿石类型 | 主要矿物组合 | 成矿元素基本特征 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni品位 | Cu品位 | Ni/Cu | PGE含量 | |||||||||||||
金川 | 新元古代与Rodinia超大裂解相关的拉张环境 | 古元古界 白家咀子组 | 纯橄岩、二辉橄榄岩、橄榄辉石岩和少量斜长二辉橄榄岩 | 海绵陨铁状、星点状、少量块状矿石、浸染状和变余海绵陨铁状 | 磁黄铁矿、镍黄铁矿和黄铜矿、砷铂矿、自然铂、锑铂矿、锑钯铂矿、碲铂矿、铋碲镍铂矿、碲铋钯矿、铋碲镍钯矿 | 平均1.05% | 平均0.68% | 平均1.54 | 富集PGE,局部Pd、Pt可高达1~2 g/t | |||||||
夏日哈木 | 早古生代晚期原特提斯—古特提斯构造转换裂解背景 | 新元古代 花岗片麻岩 | 纯橄岩、方辉橄榄岩、二辉橄榄岩、单辉橄榄岩、斜方辉石岩、辉长苏长岩、辉长岩 | 斑杂状、浸染状、海绵陨铁状、星点状和少量块状 | 磁黄铁矿、镍黄铁矿和黄铜矿 | 平均0.68% | 0.14% | 平均4.86 | (0.09~349)×10-9 | |||||||
坡一 | 早二叠世塔里木地幔柱作用下裂解背景 | 中元古界 白湖群 | 纯橄岩、角闪橄榄岩、单辉橄榄岩、单辉岩、橄榄辉长岩、辉长岩等 | 稀疏浸染状、星点状、局部偶见块状 | 磁黄铁矿、镍黄铁矿和黄铜矿 | 0.2%~0.6%,少数为0.6%~0.9%,极个别可达1%以上 | <0.15% | 平均2.5~3 | (0.19~404.17)×10-9 | |||||||
矿床名称 | 岩石地球 化学m/f | 矿物学指标 | 同位素特征 | 母岩浆中 w(MgO) | ||||||||||||
橄榄石Fo | 橄榄石Ni | 铬尖晶石Cr# | 铬尖晶石 Fe3+/∑Fe | εNd(t) | δ34S | Δ33S | ||||||||||
金川 | 2.0~6.5 | 80.0~85.7 | (1 396~2 500)×10-6 | 0.32~0.99 | -9.20~-10.54 | -1.19‰~8.00‰ | -0.01‰~2.67‰ | 11.79%~12.90% | ||||||||
夏日哈木 | 0.80~6.67 | 83.0~90.8 | (558~4 370)×10-6 | 0.15~0.61 | 0.003~0.295 | -1.97~-5.74 | 2.2‰~7.7‰ | 8.58%~9.79% | ||||||||
坡一 | 2.83~8.49 | 84.5~89.7 | 639~4 354 | 0.35~0.83 | 0.076~0.309 | -1.79~6.63 | -0.3‰~-3.5‰ | 0.004‰~0.221‰ | 12.26%~14.91% |
图6 夏日哈木、坡一岩体氧逸度与岛弧阿拉斯加型岩体氧逸度的对比(阿拉斯加型岩体尖晶石成分范围及尖晶石Fe3+/∑Fe分界线0.3据文献[8];坡一岩体数据据文献[78];夏日哈木岩体数据据文献[8])
Fig.6 Composition of oxygen fugacity of the Xiarihamu, the Poyi rock mass and the Alaska-type rock mass in the island arc
[1] | 杨树锋, 余星, 陈汉林, 等. 塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨[J]. 岩石学报, 2007, 23(5): 1087-1096. |
[2] |
LI Y Q, LI Z L, CHEN H L, et al. Mineral characteristics and metallogenesis of the Wajilitag layered mafic-ultramafic intrusion and associated Fe-Ti-V oxide deposit in the Tarim large igneous province, northwest China[J]. Journal of Asian Earth Sciences, 2012, 49: 161-174.
DOI URL |
[3] | 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4): 584-605. |
[4] | 李文渊, 张照伟, 高永宝, 等. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质, 2011, 38(5): 1135-1149. |
[5] | 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995. |
[6] | LI X H, SU L, CHUNG S L, et al. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: associated with the ~825 Ma south China mantle plume?[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): 1-16. |
[7] |
LI C, ZHANG Z, LI W, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China[J]. Lithos, 2015, 216/217: 224-240.
DOI URL |
[8] |
LIU Y G, LI W Y, JIA Q Z, et al. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the east Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China[J]. Economic Geology, 2018, 113(6): 1383-1417.
DOI URL |
[9] |
SONG X Y, YI J N, CHEN L M, et al. The giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China[J]. Economic Geology, 2016, 111(1): 29-55.
DOI URL |
[10] | 李世金, 孙丰月, 高永旺, 等. 小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 2012, 45(4): 185-191. |
[11] | 王冠. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 2014: 200. |
[12] | 李文渊. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 2015, 42(3): 365-380. |
[13] | LIU Y G, LI W Y, LV X B, et al. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry[J]. Geologica Acta, 2017, 15(1): 37-50. |
[14] |
LIU Y G, LV X B, WU C M, et al. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J]. Ore Geology Reviews, 2016, 72: 538-545.
DOI URL |
[15] |
XUE S C, QIN K Z, LI C S, et al. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim Craton, western China[J]. Economic Geology, 2016, 111(6): 1465-1484.
DOI URL |
[16] | 姜常义, 程松林, 叶书锋, 等. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J]. 岩石学报, 2006, 22(1): 115-126. |
[17] |
QIN K Z, SU B X, SAKYI P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-utramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311(3): 237-260.
DOI URL |
[18] | MAO J W, YANG J M, QU W J, et al. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance[J]. Mineral Deposits, 2002, 21(4): 323-330. |
[19] |
ZHANG Z H, MAO J W, DU A D, et al. Re-Os dating of two Cu-Ni sulfide deposits in northern Xinjiang, NW China and its geological significance[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 204-217.
DOI URL |
[20] |
ZHOU M F, MICHAEL LESHER C, YANG Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3/4): 233-257.
DOI URL |
[21] | 韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 49(22): 2324-2328. |
[22] |
ZHANG M, LI C, FU P, et al. The Permian Huangshanxi Cu-Ni deposit in western China: intrusive-extrusive association, ore genesis, and exploration implications[J]. Mineralium Deposita, 2011, 46(2): 153-170.
DOI URL |
[23] | 陈富文, 何国琦, 李华芹. 论东天山觉罗塔格造山带的大地构造属性[J]. 中国地质, 2003, 30(4): 361-366. |
[24] | 肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992. |
[25] |
EVANS D A D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction[J]. Geological Society of London, Special Publications, 2009, 327(1): 371-404.
DOI URL |
[26] |
LU S N, LI H K, ZHANG C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160(1/2): 94-107.
DOI URL |
[27] |
RINO S, KON Y, SATO W, et al. The Grenvillian and Pan-African orogens: world’s largest orogens through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 2008, 14(1/2): 51-72.
DOI URL |
[28] |
STAMPFLI G M. Response to the comments on “The formation of Pangea” by D A Ruban[J]. Tectonophysics, 2013, 608: 1445-1447.
DOI URL |
[29] |
ZHANG C L, LI H K, SANTOSH M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47: 5-20.
DOI URL |
[30] |
ZHANG C L, ZOU H B, LI H K, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315.
DOI URL |
[31] | PIRAJNO F. Ore deposits and mantle plumes[M]. Dordrecht: Springer, 2000: 387-467. |
[32] | 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210. |
[33] |
SONG S G, NIU Y L, SU L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129: 59-84.
DOI URL |
[34] |
SONG S G, ZHANG L F, NIU Y L, et al. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters, 2005, 234(1/2): 99-118.
DOI URL |
[35] |
XU Z Q, YANG J S, WU C L, et al. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt[J]. Journal of Asian Earth Sciences, 2006, 28(2/3): 160-173.
DOI URL |
[36] |
MENG F C, ZHANG J X, CUI M H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836.
DOI URL |
[37] |
XIA L Q, XU X Y, XIA Z C, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin, 2004, 116(3/4): 419-433.
DOI URL |
[38] |
YANG S F, LI Z L, CHEN H L, et al. 40Ar/39Ar dating of basalts from Tarim Basin, NW China and its implication to a Permian thermal tectonic event[J]. Journal of Zhejiang University-Science A, 2006, 7(S2): 320-324.
DOI URL |
[39] |
LI Z, LI Y, CHEN H, et al. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: implication for the magmatic source and evolution[J]. Journal of Asian Earth Sciences, 2012, 49: 191-202.
DOI URL |
[40] | 陈汉林, 杨树锋, 董传万, 等. 塔里木盆地二叠纪基性岩带的确定及大地构造意义[J]. 地球化学, 1997, 26(6): 77-87. |
[41] |
TAO Y, PUTIRKA K, HU R Z, et al. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting[J]. American Mineralogist, 2015, 100(11/12): 2509-2517.
DOI URL |
[42] |
XU Y G, CHUNG S L, JAHN B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3/4): 145-168.
DOI URL |
[43] | 张招崇, MAHONEY J J, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552. |
[44] | 王焰, 王坤, 邢长明, 等. 二叠纪峨眉山地幔柱岩浆成矿作用的多样性[J]. 矿物岩石地球化学通报, 2017, 36(3): 404-417. |
[45] | ARNDT N T, CZAMANSKE G K, WALKER R J, et al. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits[J]. Economic Geology, 2003, 98(3): 495-515. |
[46] |
SAUNDERS A D, ENGLAND R W, REICHOW M K, et al. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia[J]. Lithos, 2005, 79(3/4): 407-424.
DOI URL |
[47] |
REICHOW M K, SAUNDERS A D, WHITE R V, et al. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled[J]. Science, 2002, 296(5574): 1846-1849.
DOI URL |
[48] |
KAMO S L, CZAMANSKE G K, AMELIN Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 75-91.
DOI URL |
[49] | 焦建刚, 靳树芳, 芮会超, 等. 甘肃龙首山东段小口子镁铁-超镁铁质岩体岩石学、 地球化学及年代学研究[J]. 地质学报, 2017, 91(4): 736-747. |
[50] | 杨胜洪, 陈江峰, 屈文俊, 等. 金川铜镍硫化物矿床的 Re-Os “年龄” 及其意义[J]. 地球化学, 2007, 36(1): 27-36. |
[51] |
ZHANG M J, KAMO S L, LI C S, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita, 2010, 45(1): 3-9.
DOI URL |
[52] |
DUAN J, LI C S, QIAN Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 2016, 51(4): 557-574.
DOI URL |
[53] | 孔会磊, 李金超, 国显正, 等. 青海东昆仑希望沟铜镍矿点发现早泥盆世辉橄岩[J]. 中国地质, 2019, 46(1): 205-206. |
[54] |
LIU Y G, CHEN Z G, LI W Y, et al. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China[J]. Journal of Geochemical Exploration, 2019, 198: 41-53.
DOI URL |
[55] |
ZHANG Z W, WANG Y L, QIAN B, et al. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 2018, 96: 236-246.
DOI URL |
[56] | 青海省第五地质矿产勘查院. 青海省格尔木市夏日哈木铜镍矿区HS26号异常区详查报告[R]. 西宁: 青海省第五地质矿产勘查院, 2014: 189. |
[57] | 甘彩红. 青海东昆仑造山带火成岩岩石学、地球化学、锆石U-Pb年代学及Hf同位素特征研究[D]. 北京: 中国地质大学(北京), 2014: 83. |
[58] |
LIU Y G, LI W Y, LÜ X, et al. Sulfide Saturation mechanism of the Poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 2017, 91: 419-431.
DOI URL |
[59] | 李华芹, 陈富文, 梅玉萍, 等. 新疆坡北基性-超基性岩带Ⅰ号岩体 Sm-Nd 和 SHRIMP U-Pb 同位素年龄及其地质意义[J]. 矿床地质, 2006, 25(4): 463-469. |
[60] | 新疆维吾尔自治区地质矿产局第六地质大队. 坡一铜镍矿详查报告[R]. 乌鲁木齐: 新疆维吾尔自治区地质矿产局第六地质大队, 2013: 125. |
[61] | 段俊. 金川Cu-Ni (PGE) 岩浆硫化物矿床成因与成矿模式研究[D]. 西安: 长安大学, 2015: 127. |
[62] | 姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 31(4): 1117-1136. |
[63] | 凌锦兰. 柴周缘镁铁质-超镁铁质岩体与镍矿床成因研究[D]. 西安: 长安大学, 2014: 178. |
[64] | 姜常义, 郭娜欣, 夏明哲, 等. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因[J]. 岩石学报, 2012, 28(7): 2209-2223. |
[65] |
CHEN L M, SONG X Y, KEAYS R R, et al. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: insights from platinum group element geochemistry[J]. Economic Geology, 2013, 108(8): 1793-1811.
DOI URL |
[66] |
SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424.
DOI URL |
[67] |
ZHANG Z W, TANG Q Y, LI C S, et al. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China[J]. Mineralium Deposita, 2017, 52(1): 51-68.
DOI URL |
[68] | 杜玮, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镍矿床地质特征与成因[J]. 矿床地质, 2014, 33(4): 713-726. |
[69] |
LIU Y G, LV X B, YANG L S, et al. Metallogeny of the Poyi magmatic Cu-Ni deposit: revelation from the contrast of PGE and olivine composition with other Cu-Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 2015, 19(4): 613-620.
DOI URL |
[70] |
XIA M Z, JIANG C Y, LI C, et al. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim Craton, NW China[J]. Economic Geology, 2013, 108(8): 1865-1878.
DOI URL |
[71] | YANG S H. The Permian Pobei mafic-ultramafic intrusion (NE Tarim, NW China) and associated sulfide mineralization[D]. Hong Kong: The University of Hong Kong, 2011. |
[72] | 王亚磊, 张照伟, 张江伟, 等. 新疆坡北铜镍矿床铂族元素特征及其对成矿过程的约束[J]. 西北地质, 2017, 50(1): 13-24. |
[73] | LI C S, RIPLEY E M. The giant Jinchuan Ni-Cu-(PGE) deposit; tectonic setting, magma evolution, ore genesis, and exploration implications[J]. Reviews in Economic Geology, 2011, 17: 163-180. |
[74] | 陈列锰, 宋谢炎, DANYUSHEVSKY L V, 等. 金川岩体母岩浆成分及其分离结晶过程的熔浆热力学模拟[J]. 地质学报, 2009, 83(9): 1302-1315. |
[75] | 王亚磊, 李文渊, 张照伟, 等. 金川铜镍硫化物矿床成矿物质深部预富集过程探讨[J]. 西北地质, 2012, 45(4): 321-333. |
[76] | 刘艳荣, 吕新彪, 梅微, 等. 新疆坡北镁铁-超镁铁杂岩体中橄榄石成分特征及其成因意义[J]. 矿物岩石地球化学通报, 2012, 31(3): 249-256. |
[77] |
BARNES S J, TANG Z L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu province, People’s Republic of China[J]. Economic Geology, 1999, 94(3): 343-356.
DOI URL |
[78] | 吴建亮, 吕新彪, 冯金, 等. 新疆北山坡一基性-超基性岩体铬铁矿矿物学特征及其指示意义[J]. 大地构造与成矿学, 2018, 42(2): 348-364. |
[79] | JIANG C Y, GUO N X, XIA M Z, et al. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate[J]. Acta Petrologica Sinica, 2012, 28(7): 2209-2223. |
[80] |
RIPLEY E M, SARKAR A, LI C. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology, 2005, 100(7): 1349-1361.
DOI URL |
[81] | 白云来. 新疆哈密黄山—镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 2000, 9(2): 1-7. |
[82] | 李文渊, 牛耀龄, 张照伟, 等. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J]. 地学前缘, 2012, 19(4): 41-50. |
[83] | 毛启贵, 肖文交, 韩春明, 等. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约[J]. 岩石学报, 2006, 22(1): 153-162. |
[84] | 张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(4): 816-817. |
[85] | ZHANG Z W, LI W Y, QIAN B, et al. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt: zircon U-Pb chronologic evidence[J]. Geology in China, 2017, 44(4): 816-817. |
[86] |
BARNES S J, ROEDER P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42(12): 2279-2302.
DOI URL |
[87] | 张志炳. 东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨[D]. 北京: 中国地质大学(北京), 2016. |
[88] |
MCKENZIE D, BICKLE M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679.
DOI URL |
[89] | 刘月高, 吕新彪, 阮班晓, 等. 新疆北山早二叠世岩浆型铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 2019, 38(3): 644-666. |
[90] | 刘月高, 王李平, 梅升华, 等. 岩浆型铜镍铂族矿床形成过程中“有利混染”与“有害混染”的高温高压实验判别[C]// 中国地球物理学会. 第七届“从原子到地球”高压科学与地球科学研讨会论文集. 湖北襄阳, 2019: 39. |
[91] |
YANG S H, ZHOU M F, LIGHTFOOT P C, et al. Re-Os isotope and platinum-group element geochemistry of the Pobei Ni-Cu sulfide-bearing mafic-ultramafic complex in the northeastern part of the Tarim Craton[J]. Mineralium Deposita, 2014, 49(3): 381-397.
DOI URL |
[92] | 朱文凤, 梁有彬. 金川铜镍硫化物矿床铂族元素的赋存状态及分布规律[J]. 地质与勘探, 2000, 36(1): 26-28. |
[93] |
JUGO P J. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 2009, 37(5): 415-418.
DOI URL |
[94] | NALDRETT A. Fundamentals of magmatic sulfide deposits[J]. Reviews in Economic Geology, 2011, 17: 1-50. |
[95] | 汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4(4): 55-64. |
[96] | 汤中立, 钱壮志, 姜常义, 等. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社, 2006: 1-185. |
[97] |
MAIER W D, GROVES D I. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits[J]. Mineralium Deposita, 2011, 46(8): 841-857.
DOI URL |
[98] |
BACON C R, LOWENSTERN J B. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon[J]. Earth and Planetary Science Letters, 2005, 233(3/4): 277-293.
DOI URL |
[99] |
DORAIS M J, PETT T K, TUBRETT M. Garnetites of the Cardigan pluton, New Hampshire: evidence for peritectic garnet entrainment and implications for source rock compositions[J]. Journal of Petrology, 2009, 50(11): 1993-2016.
DOI URL |
[100] |
PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
DOI URL |
[101] |
PEARCE J A, NORRY M J. Petrogenetic Implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47.
DOI URL |
[102] |
LI C S, ARNDT N T, TANG Q Y, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83.
DOI URL |
[103] |
DONNELLY K E, GOLDSTEIN S L, LANGMUIR C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.
DOI URL |
[104] |
STRAUB S M, ZELLMER G F, GÓMEZ-TUENA A, et al. A genetic link between silicic slab components and calc-alkaline arc volcanism in central Mexico[J]. Geological Society of London, Special Publications, 2014, 385(1): 31-64.
DOI URL |
[105] |
STRAUB S M, ZELLMER G F. Volcanic arcs as archives of plate tectonic change[J]. Gondwana Research, 2012, 21(2/3): 495-516.
DOI URL |
[106] |
XIA L Q. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195-212.
DOI URL |
[107] |
ZHANG M, O’REILLY S Y, WANG K L, et al. Flood basalts and metallogeny: the lithospheric mantle connection[J]. Earth-Science Reviews, 2008, 86(1/2/3/4): 145-174.
DOI URL |
[108] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI URL |
[109] |
BARLEY M E, GROVES D I. Supercontinent cycles and the distribution of metal deposits through time[J]. Geology, 1992, 20(4): 291.
DOI URL |
[110] |
LIU Y N, SAMAHA N T, BAKER D R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(7): 1783-1799.
DOI URL |
[111] |
MAVROGENES J A, O’NEILL H S C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 1999, 63(7/8): 1173-1180.
DOI URL |
[112] | WENDLANDT R F. Sulfide saturation of basalt and andesite melts at high pressures and temperatures[J]. American Mineralogist, 1982, 67: 877-885. |
[113] |
CAMPBELL I H, NALDRETT A J, BARNES S J. A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. Journal of Petrology, 1983, 24(2): 133-165.
DOI URL |
[114] | LAMBERT D, SHIREY S. Re-Os and Sm-Nd isotopic systematics of lamproites and basalts from the southern US midcotinent: implications for the evolution of Proterozoic subcontinental Lithospheric mantle[J]. EOS Transactions American Geophysical Union, 1991, 72: 543. |
[115] | 马关宇, 高军平, 杜丁丁, 等. 金川铜镍矿床成矿后的抬升破坏: 来自热年代学的证据[J]. 世界地质, 2014, 33(3): 581-590. |
[1] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[2] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[3] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[4] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[5] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[6] | 支倩, 任蕊, 段丰浩, 黄家瑄, 朱钊, 张新远, 李永军. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58. |
[7] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[8] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[9] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[10] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[11] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[12] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[13] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[14] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[15] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||