Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 510-525.DOI: 10.13745/j.esf.sf.2023.2.66
Previous Articles Next Articles
XIE Yincai1,2(), YU Shi1,2,*(
), MIAO Xiongyi1,2, LI Jun3, HE Shiyi1,2, SUN Ping’an1,2
Received:
2022-09-06
Revised:
2022-10-31
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin[J]. Earth Science Frontiers, 2023, 30(5): 510-525.
Fig.6 Relationships between (K++Na++Ca2++Mg2+) and $\mathrm{NO}_3^{-}$ (a) and ($\mathrm{NO}_3^{-}$+$\mathrm{SO}_4^{2-}$) (b) in river water in the Lhasa River Basin
Fig.7 Equivalent ratios of [Ca2++Mg2+]/[$\mathrm{NO}_3^{-}$] vs. [$\mathrm{SO}_4^{2-}$]/[$\mathrm{NO}_3^{-}$] in waters draining the Lhasa River Basin
地区 | 河流名称 | 硫酸参与岩石风化 抵消大气CO2 消耗通量的比例/% | 数据 来源 |
---|---|---|---|
青藏高原 | 拉萨河(拉萨) | 35 | 本文 |
尼洋河(河口) | 28 | 文献[ | |
澜沧江(彬阳) | 82 | 文献[ | |
怒江(宝山) | 118 | ||
金沙江(石鼓) | 14 | 文献[ | |
岷江(高场) | 10 | ||
西南 | 赤水河(合江) | 45 | 文献[ |
乌江 | 13 | 文献[ | |
舞阳江 | 21 | ||
清水江 | 16 | ||
南盘江 | 13 | 文献[ | |
北盘江 | 20 | ||
长江(宜昌) | 13 | 文献[ | |
长江(大通) | 14 | ||
嘉陵江(北碚) | 12 | ||
汉江(仙桃) | 10 | ||
赣江(外洲) | 14 | ||
西江(蔗香) | 22 | 文献[ | |
东南 | 钱塘江(杭州) | 13 | 文献[ |
韩江(潮州) | 38 | 文献[ |
Table 3 Contrast of the proportion of sulfuric acid participating in rock weathering to offset atmospheric CO2 consumption flux of the different river basins
地区 | 河流名称 | 硫酸参与岩石风化 抵消大气CO2 消耗通量的比例/% | 数据 来源 |
---|---|---|---|
青藏高原 | 拉萨河(拉萨) | 35 | 本文 |
尼洋河(河口) | 28 | 文献[ | |
澜沧江(彬阳) | 82 | 文献[ | |
怒江(宝山) | 118 | ||
金沙江(石鼓) | 14 | 文献[ | |
岷江(高场) | 10 | ||
西南 | 赤水河(合江) | 45 | 文献[ |
乌江 | 13 | 文献[ | |
舞阳江 | 21 | ||
清水江 | 16 | ||
南盘江 | 13 | 文献[ | |
北盘江 | 20 | ||
长江(宜昌) | 13 | 文献[ | |
长江(大通) | 14 | ||
嘉陵江(北碚) | 12 | ||
汉江(仙桃) | 10 | ||
赣江(外洲) | 14 | ||
西江(蔗香) | 22 | 文献[ | |
东南 | 钱塘江(杭州) | 13 | 文献[ |
韩江(潮州) | 38 | 文献[ |
[46] |
HUANG Q B, QIN X Q, LIU P Y, et al. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China[J]. Journal of Contaminant Hydrology, 2017, 203: 18-27.
DOI URL |
[47] | 蔺学东, 张镱锂, 姚治君, 等. 拉萨河流域近50年来径流变化趋势分析[J]. 地理科学进展, 2007, 26(3): 58-67, 128. |
[48] |
MOON S, CHAMBERLAIN C P, HILLEY G E. New estimates of silicate weathering rates and their uncertainties in global rivers[J]. Geochimica et Cosmochimica Acta, 2014, 134: 257-274.
DOI URL |
[49] |
LIU J K, HAN G L. Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed[J]. Journal of Hydrology, 2020, 589: 125192.
DOI URL |
[50] |
CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277.
DOI URL |
[51] |
GROSBOIS C, NÉGREL P, FOUILLAC C, et al. Dissolved load of the Loire River: chemical and isotopic characterization[J]. Chemical Geology, 2000, 170(1/2/3/4): 179-201.
DOI URL |
[52] |
MOQUET J S, CRAVE A, VIERS J, et al. Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon Basins[J]. Chemical Geology, 2011, 287(1/2): 1-26.
DOI URL |
[53] | 章典, 师长兴, 假拉. 西藏降水化学分析[J]. 干旱区研究, 2005, 22(4): 471-474. |
[54] | 刘旭, 张东, 高爽, 等. 青藏高原小流域化学风化过程及其CO2消耗通量: 以尼洋河为例[J]. 生态学杂志, 2018, 37(3): 688-696. |
[1] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[2] |
LI S L, CALMELS D, HAN G, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 189-199.
DOI URL |
[3] |
XIE Y C, HUANG F, YANG H, et al. Role of anthropogenic sulfuric and nitric acids in carbonate weathering and associated carbon sink budget in a Karst Catchment (Guohua), southwestern China[J]. Journal of Hydrology, 2021, 599: 126287.
DOI URL |
[4] |
SCHOPKA H H, DERRY L A, ARCILLA C A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 978-1002.
DOI URL |
[5] |
FRANCE-LANORD C, DERRY L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390(6655): 65-67.
DOI |
[6] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
DOI URL |
[7] |
LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
DOI URL |
[8] | 陶正华, 赵志琦, 张东, 等. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程[J]. 生态学杂志, 2015, 34(8): 2297-2308. |
[9] | 张连凯, 覃小群, 刘朋雨, 等. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90(8): 1933-1944. |
[55] |
HAN G L, LIU C Q. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004, 204(1/2): 1-21.
DOI URL |
[56] |
ANDERSON S P, DREVER J I, FROST C D, et al. Chemical weathering in the foreland of a retreating glacier[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173-1189.
DOI URL |
[57] |
FAN B L, ZHAO Z Q, TAO F X, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River Basin: a comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences, 2014, 96: 17-26.
DOI URL |
[58] | 徐森, 李思亮, 钟君, 等. 赤水河流域水化学特征与岩石风化机制[J]. 生态学杂志, 2018, 37(3): 667-678. |
[59] | 覃小群, 蒋忠诚, 张连凯, 等. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报, 2015, 34(9): 1749-1757. |
[60] |
LIU W J, SHI C, XU Z F, et al. Water geochemistry of the Qiantangjiang River, East China: chemical weathering and CO2 consumption in a basin affected by severe acid deposition[J]. Journal of Asian Earth Sciences, 2016, 127: 246-256.
DOI URL |
[61] | 余冲, 徐志方, 刘文景, 等. 韩江流域河水地球化学特征与硅酸盐岩风化: 风化过程硫酸作用[J]. 地球与环境, 2017, 45(4): 390-398. |
[62] |
LIU B J, LIU C Q, ZHANG G, et al. Chemical weathering under mid- to cool temperate and monsoon-controlled climate: a study on water geochemistry of the Songhuajiang River system, Northeast China[J]. Applied Geochemistry, 2013, 31: 265-278.
DOI URL |
[10] |
LI H W, WANG S J, BAI X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170.
DOI URL |
[11] |
LI H W, WANG S J, BAI X Y, et al. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China Earth Sciences, 2019, 62(6): 974-991.
DOI |
[12] | 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414. |
[13] |
LERMAN A, WU L L, MACKENZIE F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106(1/2): 326-350.
DOI URL |
[14] |
LIU J K, HAN G L. Major ions and 34SSO4in Jiulongjiang River water: investigating the relationships between natural chemical weathering and human perturbations[J]. Science of the Total Environment, 2020, 724: 138208.
DOI URL |
[15] |
ZHANG Y Z, JIANG Y J, YUAN D X, et al. Source and flux of anthropogenically enhanced dissolved inorganic carbon: a comparative study of urban and forest Karst Catchments in Southwest China[J]. Science of the Total Environment, 2020, 725: 138255.
DOI URL |
[16] |
RAYMO M E, RUDDIMAN W F, FROELICH P N. Influence of Late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649.
DOI URL |
[17] |
RAYMO M E, RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
DOI |
[18] |
LI S L, CHETELAT B, YUE F J, et al. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China[J]. Journal of Asian Earth Sciences, 2014, 88: 74-84.
DOI URL |
[19] |
WU W H, XU S, YANG J, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J]. Chemical Geology, 2008, 249(3/4): 307-320.
DOI URL |
[20] |
YU Z L, YAN N, WU G J, et al. Chemical weathering in the upstream and midstream reaches of the Yarlung Tsangpo Basin, southern Tibetan Plateau[J]. Chemical Geology, 2021, 559: 119906.
DOI URL |
[21] | 吴卫华, 杨杰东, 徐士进. 青藏高原化学风化和对大气CO2的消耗通量[J]. 地质论评, 2007, 53(4): 515-528. |
[22] | 张清华, 孙平安, 何师意, 等. 西藏拉萨河流域河水主要离子化学特征及来源[J]. 环境科学, 2018, 39(3): 1065-1075. |
[23] | 吴滔, 袁鹏, 戴露, 等. 西藏拉萨河径流预测方法研究[J]. 水利科技与经济, 2005, 11(2): 77-79, 113 |
[24] |
QIN H H, GAO B, HE L, et al. Hydrogeo chemical characteristics and controlling factors of the Lhasa River under the influence of anthropogenic activities[J]. Water, 2019, 11(5): 948.
DOI URL |
[25] | 刘昭. 雅鲁藏布江拉萨-林芝段天然水水化学及同位素特征研究[D]. 成都: 成都理工大学, 2011: 17. |
[26] | 龚晨. 西藏拉萨河流域水化学时空变化及影响因素研究[D]. 天津: 天津大学, 2015: 15. |
[27] | 布多, 许祖银, 吴坚扎西, 等. 拉萨河流域选矿厂分布及其对环境的影响[J]. 西藏大学学报(社会科学版), 2009, 24(2): 33-38. |
[28] | 何柳. 拉萨河流域水文地球化学特征及其风化指示[D]. 抚州: 东华理工大学, 2019: 9-41. |
[29] | 罗丰才. 1∶20万曲水幅区域地质调查报告: 地质部分[R]. 拉萨: 西藏自治区地质矿产局, 1993: 10-40. |
[30] | 杜洋, 云影, 彭定志. 拉萨河流域不同汇流方式的TOPMODEL应用比较研究[J]. 北京师范大学学报(自然科学版), 2009, 45(5/6): 658-661. |
[31] | MEYBECK M. Pathways of major elements from land to oceans through rivers[C]// River inputs to ocean systems. New York: United Nations Press, 1981: 18-30. |
[32] | MEYBECK M. Global occurrence of major elements in rivers[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 207-223. |
[33] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[34] |
MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
DOI URL |
[35] | SUCHET P A, PROBST J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus, 1995, 47 (1/2): 273-280. |
[36] |
XU Z F, LIU C Q. Water geochemistry of the Xijiang Basin Rivers, South China: chemical weathering and CO2 consumption[J]. Applied Geochemistry, 2010, 25(10): 1603-1614.
DOI URL |
[37] | 谢银财, 朱同彬, 杨慧, 等. 硫酸对典型岩溶流域碳酸盐岩溶蚀及碳循环意义: 以广西平果岩溶流域为例[J]. 第四纪研究, 2017, 37(6): 1271-1282. |
[38] |
SAVOIE D L, PROSPERO J M. Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean[J]. Nature, 1989, 339(6227): 685-687.
DOI |
[39] | 史继清, 杨志刚, 边巴次仁, 等. 2008—2015年西藏酸雨变化特征及气象影响因子分析[J]. 高原山地气象研究, 2017, 37(3): 64-70. |
[40] |
CERLING T E, SOLOMON D K, QUADE J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3403-3405.
DOI URL |
[41] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton, FL: CRC Press/Lewis Publishers, 1997: 111-169. |
[42] |
TELMER K, VEIZER J. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives[J]. Chemical Geology, 1999, 159(1/2/3/4): 61-86.
DOI URL |
[43] |
DEINES P. Carbon isotope effects in carbonate systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2659-2679.
DOI URL |
[44] |
ZHANG J, QUAY P D, WILBUR D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114.
DOI URL |
[45] |
JIANG Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152: 1-11.
DOI URL |
[1] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[2] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[3] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[4] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[5] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[6] | WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma [J]. Earth Science Frontiers, 2024, 31(1): 500-510. |
[7] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[8] | CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle [J]. Earth Science Frontiers, 2023, 30(3): 313-339. |
[9] | WANG Xinchu, LIU Congqiang, LI Siliang, XU Sheng, DING Hu, PANG Zhiyong, SHUAI Yanhua. Methane clumped isotopes: Research progress and application in carbon cycling in Earth surface systems [J]. Earth Science Frontiers, 2023, 30(2): 463-478. |
[10] | LI Dong, ZHAO Min, LIU Zaihua, CHEN Bo. Dual carbon isotope (δ13C-Δ14C) characteristics and carbon footprint in the spring-pond systems at the Puding Karst Water-Carbon Cycle Test Site [J]. Earth Science Frontiers, 2022, 29(3): 155-166. |
[11] | QU Huaxiang,HUANG Baoqi. Paleoclimate change reflected by element ratios of terrigenous sediments from deep-sea oxygen isotope MIS6 to MIS5 at MD12-3432 station in northern South China Sea [J]. Earth Science Frontiers, 2019, 26(3): 236-242. |
[12] | DI Da-Xin, YANG Zhong-Fang, LIU Jing-Jing, JIA Hua-Ji, HOU Jing-Xie, TU Chao, YUAN Guo-Li, FENG Hai-Yan. Major ion chemistry and influencing factors of rivers in Poyang Lake Basin. [J]. Earth Science Frontiers, 2012, 19(1): 264-277. |
[13] | DI Da-Xin, YANG Zhong-Fang, LIU Jing-Jing, HOU Jing-Xie, JIA Hua-Ji, TU Chao, YUAN Guo-Li, FENG Hai-Yan. Chemical weathering and CO2 consumptions in Poyang Lake Basin. [J]. Earth Science Frontiers, 2011, 18(6): 169-181. |
[14] | CA Jin-Gong, XU Jin-Li, FENG Xiao-Ping, DENG Bing. The characteristics of Palynofacies of surface sediments collected from the Changjiang Estuary and its significance in carbon cycle. [J]. Earth Science Frontiers, 2011, 18(6): 143-149. |
[15] | . Diamond and deep carbon cycle. [J]. Earth Science Frontiers, 2011, 18(3): 268-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||