Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (1): 156-173.DOI: 10.13745/j.esf.sf.2022.8.32
Previous Articles Next Articles
Received:
2022-07-07
Revised:
2022-08-09
Online:
2023-01-25
Published:
2022-10-20
CLC Number:
HE Wenyuan. Preliminary study on nanopores, nanofissures, and in situ accumulation of Gulong shale oil[J]. Earth Science Frontiers, 2023, 30(1): 156-173.
点号 | wB/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | K | Fe | |
70 | 41.12 | 21.54 | 0.31 | 0.61 | 9.31 | 17.56 | 5.15 | 2.31 |
71 | 35.66 | 23.55 | 0.30 | 0.58 | 10.95 | 20.03 | 5.79 | 2.55 |
72 | 40.83 | 13.53 | 0.33 | 0.58 | 11.13 | 22.84 | 7.19 | 3.02 |
73 | 50.95 | 20.26 | 0.83 | 0.35 | 5.56 | 15.22 | 2.42 | 1.66 |
74 | 56.44 | 18.07 | 0.89 | 0.25 | 4.19 | 12.99 | 1.72 | 2.18 |
75 | 26.41 | 32.72 | 4.84 | 7.50 | 23.59 | 0.26 | 3.63 | |
76 | 16.99 | 33.35 | 4.11 | 10.53 | 32.09 | 2.08 | 0.85 | |
77 | 60.47 | 12.55 | 1.11 | 0.12 | 3.12 | 13.24 | 0.98 | 5.39 |
78 | 41.42 | 16.36 | 2.08 | 37.15 | 2.34 | 0.65 | ||
79 | 31.26 | 19.41 | 0.54 | 0.55 | 8.05 | 34.64 | 3.78 | 1.77 |
82 | 72.24 | 15.66 | 0.46 | 0.13 | 1.70 | 6.56 | 0.82 | 0.74 |
80 | 31.84 | 19.42 | 0.28 | 0.81 | 11.65 | 27.72 | 5.78 | 2.50 |
81 | 82.69 | 10.77 | 0.68 | 0.63 | 2.17 | 0.24 | 0.36 | |
83 | 44.19 | 21.45 | 0.51 | 1.21 | 6.72 | 13.73 | 3.43 | 3.68 |
84 | 53.87 | 21.30 | 0.39 | 0.39 | 5.33 | 13.99 | 2.78 | 1.31 |
85 | 80.18 | 7.19 | 0.29 | 0.14 | 2.39 | 5.72 | 1.29 | 1.26 |
86 | 91.46 | 0.21 | 1.51 | 3.70 | 0.44 | 0.05 | 0.76 | 1.36 |
87 | 89.24 | 0.28 | 0.12 | 1.80 | 4.42 | 0.90 | 1.21 | |
平均值 | 52.63 | 18.08 | 1.04 | 0.68 | 5.73 | 16.87 | 2.65 | 2.02 |
Table 1 Analysis results of energy spectrum of the Qing 1 section of Guye 3HC well
点号 | wB/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | K | Fe | |
70 | 41.12 | 21.54 | 0.31 | 0.61 | 9.31 | 17.56 | 5.15 | 2.31 |
71 | 35.66 | 23.55 | 0.30 | 0.58 | 10.95 | 20.03 | 5.79 | 2.55 |
72 | 40.83 | 13.53 | 0.33 | 0.58 | 11.13 | 22.84 | 7.19 | 3.02 |
73 | 50.95 | 20.26 | 0.83 | 0.35 | 5.56 | 15.22 | 2.42 | 1.66 |
74 | 56.44 | 18.07 | 0.89 | 0.25 | 4.19 | 12.99 | 1.72 | 2.18 |
75 | 26.41 | 32.72 | 4.84 | 7.50 | 23.59 | 0.26 | 3.63 | |
76 | 16.99 | 33.35 | 4.11 | 10.53 | 32.09 | 2.08 | 0.85 | |
77 | 60.47 | 12.55 | 1.11 | 0.12 | 3.12 | 13.24 | 0.98 | 5.39 |
78 | 41.42 | 16.36 | 2.08 | 37.15 | 2.34 | 0.65 | ||
79 | 31.26 | 19.41 | 0.54 | 0.55 | 8.05 | 34.64 | 3.78 | 1.77 |
82 | 72.24 | 15.66 | 0.46 | 0.13 | 1.70 | 6.56 | 0.82 | 0.74 |
80 | 31.84 | 19.42 | 0.28 | 0.81 | 11.65 | 27.72 | 5.78 | 2.50 |
81 | 82.69 | 10.77 | 0.68 | 0.63 | 2.17 | 0.24 | 0.36 | |
83 | 44.19 | 21.45 | 0.51 | 1.21 | 6.72 | 13.73 | 3.43 | 3.68 |
84 | 53.87 | 21.30 | 0.39 | 0.39 | 5.33 | 13.99 | 2.78 | 1.31 |
85 | 80.18 | 7.19 | 0.29 | 0.14 | 2.39 | 5.72 | 1.29 | 1.26 |
86 | 91.46 | 0.21 | 1.51 | 3.70 | 0.44 | 0.05 | 0.76 | 1.36 |
87 | 89.24 | 0.28 | 0.12 | 1.80 | 4.42 | 0.90 | 1.21 | |
平均值 | 52.63 | 18.08 | 1.04 | 0.68 | 5.73 | 16.87 | 2.65 | 2.02 |
Fig.14 Field mission scanning electron microscopic characteristics of shale of Member 1 of Qingshankou Formation in different hydrocarbon generation simulation stages, Gulong area. Modified after [23].
Fig.19 Correlation between pressurization (a) or resistances (b, c) of shale oil and gas and organic matter Ro in the Gulong area. Modified after [23].
[1] | 何文渊, 崔宝文, 王凤兰, 等. 古龙凹陷青山口组页岩储集空间及其油态的研究[J]. 地质论评, 2022, 68(2): 693-741. |
[2] | 陈昭年, 陈发景. 松辽盆地反转构造运动学特征[J]. 现代地质, 1996, 10(3): 390-396. |
[3] | 王广昀, 王凤兰, 蒙启安, 等. 古龙页岩油战略意义及攻关方向[J]. 大庆石油地质与开发, 2020, 39(3): 8-19. |
[4] | 孙龙德. 古龙页岩油(代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. |
[5] | 王凤兰, 付志国, 王建凯, 等. 松辽盆地古龙页岩油特征及分类评价[J]. 大庆石油地质与开发, 2021, 40 (5): 144-156. |
[6] | 崔宝文, 张顺, 付秀丽, 等. 松辽盆地古龙页岩有机层序划分及影响因素[J]. 大庆石油地质与开发, 2021, 40(5): 13-28. |
[7] | 庞彦明, 张元庆, 蔡敏, 等. 松辽盆地古龙页岩油水平井开发技术经济界线[J]. 大庆石油地质与开发, 2021, 40(5): 134-142. |
[8] | 王永卓, 王瑞, 代旭, 等. 松辽盆地古龙页岩油箱体开发设计方法[J]. 大庆石油地质与开发, 2021, 40(3): 157-169. |
[9] | 冯子辉, 霍秋立, 曾花森, 等. 松辽盆地古龙页岩有机组成与有机孔隙形成演化[J]. 大庆石油地质与开发, 2021, 40(5): 40-55. |
[10] |
KRIZEK R J, EDIL T B, OZAYYDIN I K. Preparation and identification of clay samples with controlled fabric[J]. Engineering Geology, 1975, 9: 13-38.
DOI URL |
[11] | BENNETT R H, BRYANT W R, KELLER G H. Clay fabric and geotechnical properties of selected submarine cores from the Mississippi Delta[C]//NOAA Professional Perer No.9. Washington:Department of Commerce/NOAA/ERL, 1977: 86. |
[12] | BRYANT W R, KELLER G H. Clay fabric of selected submarine sediments: fundamental properties and models[J]. Journal of Sedimentary Research, 1981, 51: 217-232. |
[13] | SCHIEBER J, REMUS L, KEVIN B, et al. An SEM study of porosity in the Eagle Ford Shale of Texas: pore types and porosity distribution in a depositional and sequencestratigraphic context[M]//BREYER J A. The Eagle Ford Shale: a renaissance in U. S. oil production. Tulsa: American Association of Petroleum Geologists Memoir, 2016, 110: 167-186. |
[14] | BENNETT R H, O’BRIEN N R, HULBERT M H. Determinants of clay and shale microfabric signatures: processes and mechanisms[M]//BENNETT R H, BRYANT W R, HULBERT M H. Microstructure of fine-grained sediments from mud to shale. New York: Springer-Verlag, 1991: 22. |
[15] | AVNIMELECH Y, MENZEL R G. Coflocculation of algae and clay to clarify turbid impoundments[J]. Journal of Soil and Water Conservation, 1984, 39(3): 200-203. |
[16] |
AVNIMELECH Y, TROEGER B W, REED L W. Mutual flocculation of algae and clay: evidence and implications[J]. Science, 1982, 216: 63-65.
PMID |
[17] | VAN OLPHEN H. An introduction to clay colloid chemistry[J]. Soil Science, 1964, 97(4): 290. |
[18] | DEGENS E T. Geochemistry of sediments: a brief survey[M]. New Jersey: Prentice Hall, 1965: 342. |
[19] | SWAIN F M. Geochemistry of humus[M]//BREGER I A. Organic geochemistry. New York: Pergamon Press, 1963: 81-147. |
[20] | HARE E. Geochemistry of proteins, peptides and amino acids[M]//EGLINTON G, MURPHY M T J. Organic geochemistry: methods and results. Berlin: Springer-Verlag, 1969: 438-63. |
[21] |
MOON C F, HURST C W. Fabric of muds and shales: an overview[J]. Geological Society London Special Publications, 1984, 15: 579-593.
DOI URL |
[22] | 梁光河. 大陆板块漂移是海底扩张驱动的吗?[C]//中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2014: 541. |
[23] |
何文渊, 蒙启安, 冯子辉, 等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报, 2022, 43(1): 1-13.
DOI |
[24] | 傅容珊, 黄建华, 李力刚, 等. 地球在膨胀吗? 板块运动与地球几何尺度变化[C]//中国地球物理学会第 14 届年会论文集. 西安: 西安地图出版社, 1998: 385. |
[25] | GERASIMENKO M D. The problem of the change of the Earth dimension in the light of space geodesy data[M]//SCALERA G, JACOB K H. Why expanding Earth? Berkeley: INGV Publisher, 2003: 395-405. |
[26] | 孙榕, 申文斌. 由空间大地测量数据探测地球膨胀[C]//中国地球物理学会第26届年会、中国地震学会第13次学术大会论文集. 北京: 地震出版社, 2010: 719-720. |
[27] | 何永祥. 天然沸石对水体中甲基橙和亚甲基蓝的吸附研究[D]. 郑州: 郑州大学, 2007. |
[28] |
梁狄刚, 冉隆辉, 戴弹申, 等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J]. 石油学报, 2011, 32(1): 8-17.
DOI |
[29] | 柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285. |
[30] | 金旭, 李国欣, 孟思炜, 等. 陆相页岩油可动用性微观综合评价[J]. 石油勘探与开发, 2021, 48(1): 222-232. |
[31] | 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85. |
[1] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[2] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[3] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[4] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[5] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[6] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[7] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[8] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[9] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[10] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[11] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[12] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[13] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[14] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[15] | ZHANG Jinchuan, WANG Xiangzeng, LI Zhongming, LIU Shugen, NIU Jialiang, YUAN Tianshu, LI Xingqi, TANG Xuan. Technological progress and trend in shale gas on-site testing—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 315-326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||