Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 210-217.DOI: 10.13745/j.esf.sf.2021.7.10
Previous Articles Next Articles
LU Zhanwu1(), GAO Rui1,2,4,*(
), Simon KLEMPERER3, WANG Haiyan1, DONG Shuwen4,5, LI Wenhui1, LI Hongqiang4
Received:
2021-06-19
Revised:
2021-08-19
Online:
2022-03-25
Published:
2022-03-31
Contact:
GAO Rui
CLC Number:
LU Zhanwu, GAO Rui, Simon KLEMPERER, WANG Haiyan, DONG Shuwen, LI Wenhui, LI Hongqiang. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Earth Science Frontiers, 2022, 29(2): 210-217.
[1] |
LEECH M L, SINGH S, JAIN A K, et al. The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234(1/2):83-97.
DOI URL |
[2] |
WILLETT S D, BEAUMONT C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369(6482):642-645.
DOI URL |
[3] |
NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath Southern Tibet: synjournal of project INDEPTH results[J]. Science, 1996, 274(5293):1684-1688.
DOI URL |
[4] | GAO R, CHENG X Z, WU G J. Lithospheric structure and geodynamic model of the Golmud-Ejin transect in northern Tibet[J]. Geological Society of America Special Paper, 1999, 328:9-17. |
[5] |
YE Z, GAO R, LI Q S, et al. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426:109-117.
DOI URL |
[6] |
KLEMPERER S L. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society, London, Special Publications, 2006, 268(1):39-70.
DOI URL |
[7] |
CAPITANIO F A, MORRA G, GOES S, et al. India-Asia convergence driven by the subduction of the Greater Indian continent[J]. Nature Geoscience, 2010, 3(2):136-139.
DOI URL |
[8] |
LE PICHON X, FOURNIER M, JOLIVET L. Kinematics, topography, shortening, and extrusion in the India-Eurasia collision[J]. Tectonics, 1992, 11(6):1085-1098.
DOI URL |
[9] |
SPAIN M, HIRN A. Seismic structure and evidence for eclogitization during the Himalayan convergence[J]. Tectonophysics, 1997, 273(1/2):1-16.
DOI URL |
[10] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865):738-742.
DOI URL |
[11] | AVOUAC J P. Dynamic processes in extensional and compressional settings-mountain building: from earthquakes to geological deformation[M]// Treatise on geophysics. Amsterdam: Elsevier, 2007: 377-439. |
[12] | HERMAN F, COPELAND P, AVOUAC J P, et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6):B06407. |
[13] |
KOHN M J. Himalayan metamorphism and its tectonic implications[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1):381-419.
DOI URL |
[14] | WU G J, XIAO X C, LI T D. Yadong to Golmud transect: Qinghai-Tibet Plateau, China[M]. Washington DC: American Geophysical Union, 1991. |
[15] |
MAKOVSKY Y, KLEMPERER S L, RATSCHBACHER L, et al. Midcrustal reflector on INDEPTH wide-angle profiles: an ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 1999, 18(5):793-808.
DOI URL |
[16] |
ZHAO W J, NELSON K D, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455):557-559.
DOI URL |
[17] |
ALSDORF D, BROWN L, NELSON K D, et al. Crustal deformation of the Lhasa terrane, Tibet Plateau from Project INDEPTH deep seismic reflection profiles[J]. Tectonics, 1998, 17(4):501-519.
DOI URL |
[18] |
PRASAD B R, KLEMPERER S L, RAO V V, et al. Crustal structure beneath the Sub-Himalayan fold-thrust belt, Kangra recess, Northwest India, from seismic reflection profiling: implications for Late Paleoproterozoic orogenesis and modern earthquake hazard[J]. Earth and Planetary Science Letters, 2011, 308(1/2):218-228.
DOI URL |
[19] |
CALDWELL W B, KLEMPERER S L, LAWRENCE J F, et al. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking[J]. Earth and Planetary Science Letters, 2013, 367:15-27.
DOI URL |
[20] |
NÁBĚLEK J, HETÉNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946):1371-1374.
DOI URL |
[21] |
SCHULTE-PELKUM V, MONSALVE G, SHEEHAN A, et al. Imaging the Indian subcontinent beneath the Himalaya[J]. Nature, 2005, 435(7046):1222-1225.
DOI URL |
[22] |
KIND R, YUAN X H, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596):1219-1221.
DOI URL |
[23] |
SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414:6-15.
DOI URL |
[24] |
KLEMPERER S L, KENNEDY B M, SASTRY S R, et al. Mantle fluids in the Karakoram fault: helium isotope evidence[J]. Earth and Planetary Science Letters, 2013, 366:59-70.
DOI URL |
[25] |
MURPHY M A, YIN A, KAPP P, et al. Structural evolution of the Gurla Mandhata detachment system, Southwest Tibet: implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4):428-447.
DOI URL |
[26] |
MURPHY M A, YIN A. Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, southwest Tibet[J]. Geological Society of America Bulletin, 2003, 115(1):21-34.
DOI URL |
[27] |
PULLEN A, KAPP P, DECELLES P G, et al. Cenozoic anatexis and exhumation of Tethyan sequence rocks in the Xiao Gurla Range, Southwest Tibet[J]. Tectonophysics, 2011, 501(1/2/3/4):28-40.
DOI URL |
[28] |
GILLIGAN A, PRIESTLEY K F, ROECKER S W, et al. The crustal structure of the western Himalayas and Tibet[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5):3946-3964.
DOI URL |
[29] |
MURPHY M A, TAYLOR M H, GOSSE J, et al. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal[J]. Nature Geoscience, 2014, 7(1):38-42.
DOI URL |
[30] |
RAZI A S, LEVIN V, ROECKER S W, et al. Crustal and uppermost mantle structure beneath western Tibet using seismic traveltime tomography[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2):434-452.
DOI URL |
[31] |
LE ROUX-MALLOUF R, GODARD V, CATTIN R, et al. Evidence for a wide and gently dipping Main Himalayan Thrust in western Bhutan[J]. Geophysical Research Letters, 2015, 42(9):3257-3265.
DOI URL |
[32] |
LYNN H B, DEREGOWSKI S. Dip limitations on migrated sections as a function of line length and recording time[J]. Geophysics, 1981, 46(10):1392-1397.
DOI URL |
[33] |
BOLLINGER L, HENRY P, AVOUAC J P. Mountain building in the Nepal Himalaya: thermal and kinematic model[J]. Earth and Planetary Science Letters, 2006, 244(1/2):58-71.
DOI URL |
[34] |
KLEMPERER S L, HAUGE T A, HAUSER E C, et al. The Moho in the northern basin and range province, Nevada, along the COCORP 40°seismic reflection transect[J]. Geological Society of America Bulletin, 1986, 97(5):603-618.
DOI URL |
[35] |
MILLER C, SCHUSTER R, KLÖTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40(9):1399-1424.
DOI URL |
[36] |
WOBUS C, HEIMSATH A, WHIPPLE K, et al. Active out-of-sequence thrust faulting in the central Nepalese Himalaya[J]. Nature, 2005, 434(7036):1008-1011.
DOI URL |
[37] |
ROSS A R, BROWN L D, PANANONT P, et al. Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow[J]. Geophysical Journal International, 2004, 156(1):115-128.
DOI URL |
[1] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[2] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[3] | MU Qing, HUANG Rong, YAN Jiayong, LU Zhanwu, LUO Yinhe, ZHANG Yongqian, JIANG Xiaohuan, WEN Hongbin, WEI Penglong, ZHOU Wanli. Constraining the crustal structure of the southern segment of the north-south gravity lineament by the receiver function H-κ-c method [J]. Earth Science Frontiers, 2023, 30(5): 369-383. |
[4] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
[5] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[6] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
[7] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[8] | GONG Chenglin, LIU Li, SHAO Dali, GUO Rongtao, ZHU Yijie, QI Kun. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model [J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
[9] | WU Guowei, XIONG Xiaosong, GAO Rui, CHEN Xuanhua, LI Yingkang, WANG Guan, WANG Xiaocheng, REN Haidong. 2D Tomographic imaging of the P-wave velocity structure in the upper crust beneath the southern Beishan tectonic belt [J]. Earth Science Frontiers, 2022, 29(2): 402-415. |
[10] | GAO Rui, ZHOU Hui, LU Zhanwu, GUO Xiaoyu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau [J]. Earth Science Frontiers, 2022, 29(2): 14-27. |
[11] | GAO Rui, ZHOU Hui, GUO Xiaoyu, LU Zhanwu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(5): 320-336. |
[12] | LI Zong-Xing, GAO Dun, LI Wen-Fei, TUN Jian-Feng. The characteristics of geothermal field and controlling factors in Qaidam Basin, Northwest China. [J]. Earth Science Frontiers, 2016, 23(5): 23-32. |
[13] | YA Dan-Beng, LI Shu-Bing, CAO Wen-Chao, ZHANG Wei-Chen. Multilayer detachment crustal structure in the Longmen Mountains: Evidences from neotectonic deformation and geophysical data. [J]. Earth Science Frontiers, 2010, 17(5): 106-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||