Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 49-55.DOI: 10.13745/j.esf.sf.2020.12.1
Previous Articles Next Articles
Received:
2021-01-10
Revised:
2021-03-20
Online:
2021-05-20
Published:
2021-05-23
CLC Number:
ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources[J]. Earth Science Frontiers, 2021, 28(3): 49-55.
[1] | 左仁广. 基于深度学习的深层次矿化信息挖掘与集成[J]. 矿物岩石地球化学通报, 2019, 38(1):53-59. |
[2] | 左仁广. 勘查地球化学数据挖掘与弱异常识别[J]. 地学前缘, 2019, 26(4):67-75. |
[3] | 陈永清, 赵鹏大. 综合致矿地质异常信息提取与集成[J]. 地球科学: 中国地质大学学报, 2009, 34(2):325-335. |
[4] |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth System Science[J]. Nature, 2019, 566(7743):195-204.
DOI URL |
[5] |
ZUO R G. Geodata science-based mineral prospectivity mapping: a review[J]. Natural Resources Research, 2020, 29:3415-3424.
DOI URL |
[6] | HEY T, TANSLEY S, TOLLE K. The fourth paradigm: data-intensive scientific discovery[M]. Redmond, WA: Microsoft Research, 2009: 284. |
[7] | NAUR P. Concise survey of computer methods[M]. London: Petrocelli Books, 1974. |
[8] | HAYASHI C. What is data science? Fundamental concepts and a heuristic example[M]// Data science, classification, and related methods. Tokyo: Springer, 1998: 40-51. |
[9] |
MATTMANN C A. A vision for data science[J]. Nature, 2013, 493(7433):473-475.
DOI URL |
[10] |
CLEVELAND W S. Data science: an action plan for expanding the technical areas of the field of statistics[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2014, 7(6):414-417.
DOI URL |
[11] |
ZUO R G, XIONG Y H. Geodata science and geochemical mapping[J]. Journal of Geochemical Exploration, 2020, 209:106431.
DOI URL |
[12] | 王世称, 陈永良, 夏立显. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000: 343. |
[13] | 赵鹏大. “三联式”资源定量预测与评价:数字找矿理论与实践探讨[J]. 地球科学: 中国地质大学学报, 2001, 27(5):139-148. |
[14] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5):1-10. |
[15] | 成秋明. 非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学: 中国地质大学学报, 2006, 31(3):337-348. |
[16] | 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7):1255-1259. |
[17] | 赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4):1-5. |
[18] |
CHENG Q M, OBERHANSLI R, ZHAO M. A new international initiative for facilitating data-driven earth science transformation[J]. Geological Society of London, Special Publications, 2020, 499(1):225-240.
DOI URL |
[19] |
TAYLOR R B, STEVEN T A. Definition of mineral resource potential[J]. Economic Geology, 1983, 78(6):1268-1270.
DOI URL |
[20] |
AGTERBERG F P. Computer programs for mineral exploration[J]. Science, 1989, 245(4913):76-81.
DOI URL |
[21] | BONHAM-CARTER G F. Geographic information systems for geoscientists: modelling with GIS[M]. Oxford: Pergamon Press, 1994: 398. |
[22] | 叶天竺, 肖克炎, 严光生. 矿床模型综合地质信息预测技术研究[J]. 地学前缘, 2007, 14(5):11-19. |
[23] | 肖克炎, 张晓华, 李景朝, 等. 全国重要矿产总量预测方法[J]. 地学前缘, 2007, 14(5):20-26. |
[24] | WYBORN L A I, HEINRICH C A, JAQUES A L. Australian Proterozoic mineral systems: essential ingredients and mappable criteria[C]. Melbourne: Australasian Institute of Mining and Metallurgy, 1994: 109-115. |
[25] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1):3-5. |
[26] |
MCCUAIG T C, BERESFORD S, HRONSKY J. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 2010, 38(3):128-138.
DOI URL |
[27] |
DAVIES R S, GROVES D I, TRENCH A, et al. Towards producing mineral resource-potential maps within a mineral systems framework, with emphasis on Australian orogenic gold systems[J]. Ore Geology Reviews, 2020: 119. DOI: 10.1016/j.gexplo.2019.106431.
DOI |
[28] |
XIONG Y H, ZUO R G, CARRANZA E J M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm[J]. Ore Geology Reviews, 2018, 102:811-817.
DOI URL |
[29] |
YOUSEFI M, KREUZER O P, NYKANEN V, et al. Exploration information systems: a proposal for the future use of GIS in mineral exploration targeting[J]. Ore Geology Reviews, 2019, 111. DOI: 10.1016/j.oregeorev.2019.103005.
DOI |
[30] | 肖克炎, 孙莉, 李楠, 等. 大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7):1266-1272. |
[31] | 翟裕生. 试论矿床成因的基本模型[J]. 地学前缘, 2014, 21(1):1-8. |
[32] | 赵鹏大, 池顺都. 初论地质异常[J]. 地球科学: 中国地质大学学报, 1991, 16(3):241-248. |
[33] |
CHENG Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2):314-324.
DOI URL |
[34] | ZHAO P, CHEN J, ZHANG S, et al. Mineral deposits: geological anomalies with high economic value[C]. Toronto: Proceedings of IAMG’05: GIS and Spatial Analysis, 2005: 1022-1027. |
[35] |
CHENG Q M, AGTERBERY F P, BALLANTYNE S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2):109-130.
DOI URL |
[36] |
CHENG Q M, XU Y, GRUNSKY E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research, 2000, 9(1):43-52.
DOI URL |
[37] |
CHENG Q M, AGTERBERY F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1):27-35.
DOI URL |
[38] | AGTERBERG F P, BONHAM-CARTER G F. Logistic regression and weights of evidence modeling in mineral exploration[C]// Proceedings of 28th International Symposium on Computer Applications in the Mineral Industries. Colorado: Golden, 1999: 483-490. |
[39] | AN P, MOON W M, RENCZ A. Application of fuzzy set theory to integrated mineral exploration[J]. Canadian Journal of Exploration Geophysics, 1991, 27:1-11. |
[40] |
PORWAL A, CARRANZA E J M. Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration[J]. Ore Geology Reviews, 2015, 71:477-483.
DOI URL |
[41] |
SINGER D A, KOUDA R. Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan[J]. Mathematical Geology, 1996, 28(8):1017-1023.
DOI URL |
[42] |
ZUO R G, CARRANZA E J M. Support vector machine: a tool for mapping mineral prospectivity[J]. Computers & Geosciences, 2011, 37(12):1967-1975.
DOI URL |
[43] |
RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, et al. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71:804-818.
DOI URL |
[44] |
CHEN Y L, WU W. Mapping mineral prospectivity using an extreme learning machine regression[J]. Ore Geology Reviews, 2017, 80:200-213.
DOI URL |
[45] |
CARRANZA E J M, LABORTE A G. Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (the Philippines)[J]. Natural Resources Research, 2016, 25(1):35-50.
DOI URL |
[46] |
LI S, CHEN J, XIANG J. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data[J]. Neural Computing and Applications, 2020, 32:2037-2053.
DOI URL |
[47] |
SUN T, LI H, WU K, et al. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi province, China[J]. Minerals, 2020, 10(2):102.
DOI URL |
[48] | SINGER D, MENZIE W D. Quantitative mineral resource assessments: an integrated approach[M]. Oxford: Oxford University Press, 2010. |
[49] |
WANG Z, YIN Z, CARES J, et al. A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping[J]. Geoscience Frontiers, 2020, 11(6):2297-2308.
DOI URL |
[50] |
ZUO R G, WANG Z Y. Effects of random negative training samples on mineral prospectivity mapping[J]. Natural Resources Research, 2020, 29:3443-3455.
DOI URL |
[1] | YUAN Feng, LI Xiaohui, TIAN Weidong, ZHOU Guanqun, WANG Jinju, GE Can, GUO Xianzheng, ZHENG Chaojie. Key issues in three-dimensional predictive modeling of mineral prospectivity [J]. Earth Science Frontiers, 2024, 31(4): 119-128. |
[2] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[3] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[4] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[5] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[6] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[7] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[8] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[9] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[10] | ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao. Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian [J]. Earth Science Frontiers, 2021, 28(3): 221-235. |
[11] | KONG Weihao, XIAO Keyan, CHEN Jianping, SUN Li, LI Nan. A combined prediction method for reducing prediction uncertainty in the quantitative mineral resources prediction [J]. Earth Science Frontiers, 2021, 28(3): 128-138. |
[12] | XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, LENG Shuai, LI Tongfei, XIONG Shuangcai. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies [J]. Earth Science Frontiers, 2021, 28(3): 56-66. |
[13] | XI Xiaohuan. Big data science from informationization to modelling to intelligentization: New paradigm of applied geochemical research [J]. Earth Science Frontiers, 2021, 28(1): 308-317. |
[14] | ZHANG Qi,JIAO Shoutao,LI Mingchao,ZHU Yueqin,HAN Shuai,LIU Xuelong, JIN Weijun,CHEN Wanfeng,LIU Xinyu. Applicability of quantum entanglement technology in geology [J]. Earth Science Frontiers, 2019, 26(4): 159-169. |
[15] | ZUO Renguang. Exploration geochemical data mining and weak geochemical anomalies identification [J]. Earth Science Frontiers, 2019, 26(4): 67-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||