Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 106-124.DOI: 10.13745/j.esf.sf.2020.9.12
Previous Articles Next Articles
WANG Yufeng(), CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen
Received:
2020-06-29
Revised:
2020-09-20
Online:
2021-03-25
Published:
2021-04-03
CLC Number:
WANG Yufeng, CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen. Observations on the sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 106-124.
Fig.1 Geological settings of the study area (a), and plan-views of the Tagarma rock avalanche (b), the Nyixoi Chongco rock avalanche (c) and the Luanshibao rock avalanche (d). Modified after Topographic Map of China, No. GS(2016)1609.
Fig.13 Photos showing the surficial landforms of zones Ⅱ (a,b) and Ⅲ (c-e) and deposited structures of megablocks (f) of the Luanshibao rock avalanche
[1] | 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007,25(1):72-84. |
[2] | 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2008. |
[3] | 许强, 裴向军, 黄润秋, 等. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009. |
[4] | PLAFKER G, ERICKSEN G E. Nevados Huascaran avalanches, Peru[M]//VOIGHT B. Rockslides and avalanche. Amsterdam: Elsevier, 1978: 277-314. |
[5] |
FAN X M, XU Q, SCARINGI G, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides, 2019,16(1):139-154.
DOI URL |
[6] | 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 2017,44(5):827-841. |
[7] | 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡: 堰塞堵江事件分析研究[J]. 工程地质学报, 2018,26(6):1534-1551. |
[8] | SHREVE R L. Geology and mechanics of the Blackhawk landslide, Lucerne Valley, California[D]. Los Angeles: California Institute of Technology Pasadena, 1959. |
[9] | 成都地质学院工程地质研究室. 龙羊峡水电站重大工程地质问题研究[M]. 成都: 成都科技大学出版社, 1989. |
[10] |
DAVIES T, MCSAVENEY M J, HODGSONK K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 1999,36(6):1096-1110.
DOI URL |
[11] |
IVERSON R M, REID M E, LOGANM M L, et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 2011,4(2):116.
DOI URL |
[12] |
HABIB P. Production of gaseous pore pressure during rock slides[J]. Rock Mechanics, 1975,7(4):193-197.
DOI URL |
[13] | WANG Y F, DONG J J, CHENG Q G. Velocity-dependent frictional weakening of large rock avalanche basal facies: implications for rock avalanche hypermobility?[J]. Journal of Geophysical Research: Solid Earth, 2017,122(3):1648-1676. |
[14] |
HU W, HUANG R Q, MCSAVENEY M, et al. Mineral changes quantify frictional heating during a large low-friction landslide[J]. Geology, 2018,46(3):223-226.
DOI URL |
[15] |
XU Q, SHANG Y J, VAN ASCH T, et al. Observations from the large, rapid Yigong rockslide-debris avalanche, southeast Tibet[J]. Canadian Geotechnical Journal, 2012,49(5):589-606.
DOI URL |
[16] | STROM A L, ABDRAKHMATOV K. Rockslides and rock avalanches of central Asia: distribution, impacts, and hazard assessment[M]. Amsterdam: Elsevier, 2018. |
[17] |
DE BLASIO F V. Friction and dynamics of rock avalanches travelling on glaciers[J]. Geomorphology, 2014,213:88-98.
DOI URL |
[18] |
AARON J, MCDOUGALL S. Rock avalanche mobility: the role of path material[J]. Engineering Geology, 2019,257:105126.
DOI URL |
[19] |
BLAIR T C. Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California[J]. Canadian Journal of Earth Sciences, 1999,36(6):855-870.
DOI URL |
[20] | CHARRIÈRE M, HUMAIR F, FROESE C, et al. From the source area to the deposit: collapse, fragmentation, and propagation of the Frank Slide[J]. Geological Society of America Bulletin, 2016,128(1/2):332-351. |
[21] |
DUFRESNE A, DAVIEST R. Longitudinal ridges in mass movement deposits[J]. Geomorphology, 2009,105(3/4):171-181.
DOI URL |
[22] |
DUFRESNE A, PRAGER C, BÖSMEIER A. Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria)[J]. Earth Surface Processes and Landforms, 2016,41(5):587-602.
DOI URL |
[23] |
DUFRESNE A, GEERTSEMA M. Rock slide-debris avalanches: flow transformation and hummock formation, examples from British Columbia[J]. Landslides, 2020,17:15-32.
DOI URL |
[24] |
LONGCHAMP C, ABELLAN A, JABOYEDOFF M, et al. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism[J]. Earth Surface Dynamics, 2016,4(3):743-755.
DOI URL |
[25] |
PAGUICAN E M R, VAN WYK DE VRIES B, LAGMAY A F M. Hummocks: how they form and how they evolve in rockslide-debris avalanches[J]. Landslides, 2014,11(1):67-80.
DOI URL |
[26] | JOHNSON C G, KOKELAAR B P, IVERSON R M, et al. Grain-size segregation and levee formation in geophysical mass flows[J]. Journal of Geophysical Research: Earth Surface, 2012,117(F1):F01032. |
[27] |
OSTERMANN M, SANDERS D, IVY-OCHS S, et al. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement[J]. Geomorphology, 2012,171/172:83-93.
DOI URL |
[28] |
SHEA T, VAN WYK DE VRIES B. Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches[J]. Geosphere, 2008,4(4):657-686.
DOI URL |
[29] | 崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014,10(2):103-109. |
[30] | 童立强, 祁生文, 安国英. 喜马拉雅山地区重大地质灾害遥感调查研究[M]. 北京: 科学出版社, 2013. |
[31] | 李文巧, 陈杰, 袁兆德, 等. 帕米尔高原1895年塔什库尔干地震地表多段同震破裂与发震构造[J]. 地震地质, 2011,33(2):260-276. |
[32] | 吴中海, 叶培盛, 王成敏, 等. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学: 中国地质大学学报, 2015,40(10):1621-1642. |
[33] | 徐锡伟, 闻学泽, 于贵华, 等. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学: 地球科学, 2005,35(6):540-551. |
[34] |
NICOLETTI P G, SORRISOVALVO M. Geomorphic controls of the shape and mobility of rock avalanches[J]. Geological Society of America Bulletin, 1991,103(10):1365-1373.
DOI URL |
[35] | 袁兆德, 陈杰, 李文巧, 等. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 2012,32(3):409-416. |
[36] |
ZHU Y X, DAI F C, YAO X, et al. Field investigation and numerical simulation of the seismic triggering mechanism of the Tahman landslide in eastern Pamir, northwest China[J]. Bulletin of Engineering Geology and the Environment, 2019,78(8):5795-5809.
DOI URL |
[37] |
WANG Y F, CHENG Q G, LIN Q W, et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 2018,317:170-183.
DOI URL |
[38] |
DUFRESNE A, BÖSMEIER A, BÖSMEIER A . Sedimentology of rock avalanche deposits-case study and review[J]. Earth-Science Reviews, 2016,163:234-259.
DOI URL |
[39] |
MISHRA S, KHETWAL A, CHAKRABORTY T. Dynamic characterisation of gneiss[J]. Rock Mechanics and Rock Engineering, 2019,52(1):61-81.
DOI URL |
[40] |
ANDRADE D, VAN WYK DE VRIES B. Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models[J]. Bulletin of Volcanology, 2010,72(7):771-789.
DOI URL |
[41] |
THOMPSON N, BENNETT M R, PETFORD N. Development of characteristic volcanic debris avalanche deposit structures: new insight from distinct element simulations[J]. Journal of Volcanology and Geothermal Research, 2010,192(3/4):191-200.
DOI URL |
[42] | STROM A. Evidence of momentum transfer during large-scale rockslide’s motion[C]//Geologically Active-proceedings of the 11th IAEG Congress. Auckland: CRC Press, 2010: 73-86. |
[43] |
HUNGR O, EVANS S G. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 2004,116(9):1240-1252.
DOI URL |
[44] |
NICOLETTI P G, PARISE M. Geomorphology and kinematics of the Conturrana rockslide-debris flow (NW Sicily)[J]. Earth Surface Processes and Landforms, 1996,21(10):875-892.
DOI URL |
[45] |
YOSHIDA H. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area[J]. Geomorphology, 2014,223:67-80.
DOI URL |
[46] | STROM A. Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modeling[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from massive rock slope failure. Dordrecht: Springer, 2006: 305-326. |
[47] |
YARNOLD J C. Rock-avalanche characteristics in dry climates and the effect of flow into lakes: insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona[J]. Geological Society of America Bulletin, 1993,105(3):345-360.
DOI URL |
[1] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[2] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[3] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
[4] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[5] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[6] | LIU Xiaoyu, YANG Wencai, CHEN Zhaoxi, QU Chen, YU Changqing. Attributes and evolution of the eastern massif in the Qinghai-Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(3): 233-241. |
[7] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[8] | JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 156-174. |
[9] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[10] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[11] | GONG Chenglin, LIU Li, SHAO Dali, GUO Rongtao, ZHU Yijie, QI Kun. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model [J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
[12] | GAO Rui, ZHOU Hui, LU Zhanwu, GUO Xiaoyu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau [J]. Earth Science Frontiers, 2022, 29(2): 14-27. |
[13] | LU Zhanwu, GAO Rui, Simon KLEMPERER, WANG Haiyan, DONG Shuwen, LI Wenhui, LI Hongqiang. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya [J]. Earth Science Frontiers, 2022, 29(2): 210-217. |
[14] | ZHANG Heng, XU Tuanwei, PEI Shunping, ZHAO Junmeng. Application of distributed acoustic sensing in structural investigation of Lake Yigong in Tibet [J]. Earth Science Frontiers, 2021, 28(6): 227-234. |
[15] | GAO Rui, ZHOU Hui, GUO Xiaoyu, LU Zhanwu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(5): 320-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||