Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 79-98.DOI: 10.13745/j.esf.sf.2020.3.13
Previous Articles Next Articles
LIU Jiajun1,2(), ZHAI Degao1,2, WANG Dazhao3, GAO Shen4, YIN Chao1,2, LIU Zhenjiang1,2, WANG Jianping1,2, WANG Yinhong1,2, ZHANG Fangfang1,2
Received:
2020-01-18
Revised:
2020-02-25
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
LIU Jiajun, ZHAI Degao, WANG Dazhao, GAO Shen, YIN Chao, LIU Zhenjiang, WANG Jianping, WANG Yinhong, ZHANG Fangfang. Classification and mineralization of the Au-(Ag)-Te-Se deposits[J]. Earth Science Frontiers, 2020, 27(2): 79-98.
[1] | 涂光炽. 初论碲的成矿问题[J]. 矿物岩石地球化学通报, 2000, 19(4): 211-214. |
[2] | COOKE D R, MCPHAIL D C. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, the Philippiness: numerical simulations of mineral deposition[J]. Economic Geology, 2001, 96(1): 109-131. |
[3] | COOK N J, CIOBANU C L. Tellurides in Au deposits: implications for modelling[M]// MAO J W, BIERLEIN F P. Mineral deposit research: meeting the global challenge. Berlin, Heidelberg: Springer, 2005: 1387-1390. |
[4] |
CIOBANU C L, COOK N J, SPRY P G. Preface-special issue: telluride and selenide minerals in gold deposits-how and why?[J]. Mineralogy and Petrology, 2006, 87(3/4): 163-169.
DOI URL |
[5] | 翟裕生, 邓军, 彭润民, 等. 成矿系统论[M]. 北京: 地质出版社, 2011: 1-313. |
[6] |
KEITH M, SMITH D J, JENKIN G R T, et al. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes[J]. Ore Geology Reviews, 2018, 96: 269-282.
DOI URL |
[7] |
SIMON G, ESSENE E J. Phase relations among selenides, sulfides, tellurides, and oxides; I, thermodynamic properties and calculated equilibria[J]. Economic Geology, 1996, 91(7): 1183-1208.
DOI URL |
[8] |
SIMON G, KESLER S E, ESSENE E J. Phase relations among selenides, tellurides, and oxides: II.Applications to selenide-bearing ore deposits[J]. Economic Geology, 1997, 92(4): 468-484.
DOI URL |
[9] | 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987:1-281. |
[10] | YAMAMOTO M, KASE K, TSUTSUMI M. Fractionation of sulfur isotopes and selenium between coexisting sulfide minerals from the Besshi deposit, Central Shikoku, Japan[J]. Mineralium Deposita, 1984, 19(3): 237-242. |
[11] |
HUSTON D L, SIE S H, SUTER G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium levels in pyrite: comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196.
DOI URL |
[12] |
CIOBANU C L, COOK N J, UTSUNOMIYA S, et al. Gold-telluride nanoparticles revealed in arsenic-free pyrite[J]. American Mineralogist, 2012, 97(8/9): 1515-1518.
DOI URL |
[13] | 钱汉东, 陈武, 谢家东, 等. 碲矿物综述[J]. 高校地质学报, 2000, 6(2): 178-187. |
[14] |
AHMAD M, SOLOMON M, WALSHE J L. Mineralogical and geochemical studies of the Emperor gold Telluride deposit, Fiji[J]. Economic Geology, 1987, 82(2): 345-370.
DOI URL |
[15] | SAUNDERS J A, MAY E R, BESSIE G. A high grade epithermal gold telluride deposit, La Plata Co., Colorado, U S A[M]// MACDONALD A J. Gold’86. An international symposium on the geology of gold deposits. Toronto: Konult International, 1986: 436-444. |
[16] |
LIU J L, ZHAO S J, COOK N J, et al. Bonanza-grade accumulations of gold tellurides in the Early Cretaceous Sandaowanzi deposit, Northeast China[J]. Ore Geology Reviews, 2013, 54: 110-126.
DOI URL |
[17] |
ZHAI D G, LIU J J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: implications for phase equilibrium and physicochemical conditions[J]. Mineralogy and Petrology, 2014, 108(6): 853-871.
DOI URL |
[18] |
GAO S, XU H, ZANG Y Q, et al. Late Mesozoic magmatism and metallogeny in NE China: the Sandaowanzi-Beidagou example[J]. International Geology Review, 2017, 59(11): 1413-1438.
DOI URL |
[19] | 于学峰, 李大鹏, 李增胜, 等. 鲁西归来庄金矿田碲金元素地球化学过程研究[J]. 矿床地质, 2019, 38(2): 277-290 |
[20] |
DREW L J, BERGER B R, KURBANOV N K. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum Desert, Uzbekistan[J]. Ore Geology Reviews, 1996, 11(4): 175-196.
DOI URL |
[21] | IVANOV S M, ANSDELL K M, MELROSE D L. Ore texture and stable isotope constraints on ore deposition mechanisms at the Kumtor lode gold deposit [C]. Nevada: Society of Economic Geologists, 2000: 47-52. |
[22] |
DISTLER V V, YUDOVSKAYA M A, MITROFANOV G L, et al. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia[J]. Ore Geology Reviews, 2004, 24(1/2): 7-44.
DOI URL |
[23] |
MUELLER A G, MUHLING J R. Silver-rich telluride mineralization at Mount Charlotte and Au-Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia[J]. Mineralium Deposita, 2013, 48(3): 295-311.
DOI URL |
[24] |
ISPOLATOV V, LAFRANCE B, DUBÉ B, et al. Geologic and structural setting of gold mineralization in the Kirkland Lake-Larder Lake gold belt, Ontario[J]. Economic Geology, 2008, 103(6): 1309-1340.
DOI URL |
[25] |
BOWELL R J, FOSTER R P, STANLEY C J. Telluride mineralization at Ashanti gold mine, Ghana[J]. Mineralogical Magazine, 1990, 54(377): 617-627.
DOI URL |
[26] | 刘家军, 杨隆勃, 翟德高, 等. 捷克Jílové金矿集区中硒矿物的特征与硒化物-碲化物的形成物理化学条件[J]. 地学前缘, 2013, 20(1): 166-181. |
[27] |
JIAN W, LEHMANN B, MAO J, et al. Mineralogy, fluid characteristics, and Re-Os age of the late Triassic Dahu Au-Mo deposit, Xiaoqinling region, central China: evidence for a magmatic-hydrothermal origin[J]. Economic Geology, 2015, 110(1): 119-145.
DOI URL |
[28] |
YIN C, LIU J J, CARRANZA E J M, et al. Mineralogical constraints on the genesis of the Dahu quartz vein-style Au-Mo deposit, Xiaoqinling gold district, China: implications for phase relationships and physicochemical conditions[J]. Ore Geology Reviews, 2019, 113: 103107.
DOI URL |
[29] |
LI J W, LI Z K, ZHOU M F, et al. The early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: a link between craton reactivation and gold veining[J]. Economic Geology, 2012, 107(1): 43-79.
DOI URL |
[30] |
JIAN W, LEHMANN B, MAO J W, et al. Telluride and Bi-sulfosalt mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling region, Central China[J]. The Canadian Mineralogist, 2014, 52(5): 883-898.
DOI URL |
[31] |
EMSBO P, HOFSTRA A H, LAUHA E A, et al. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin trend, Nevada[J]. Economic Geology, 2003, 98(6): 1069-1105.
DOI URL |
[32] |
ASADI H H, VONCKEN J H L, KÜHNEL R A, et al. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, Northwest Iran[J]. Mineralium Deposita, 2000, 35(7): 656-671.
DOI URL |
[33] |
LIU J J, DAI H Z, ZHAI D G, et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, Western Qinling Mountains, China[J]. Ore Geology Reviews, 2015, 64: 273-298.
DOI URL |
[34] |
GAO S, XU H, ZHANG D S, et al. Ore petrography and chemistry of the tellurides from the Dongping gold deposit, Hebei Province, China[J]. Ore Geology Reviews, 2015, 64: 23-34.
DOI URL |
[35] |
WANG D Z, LIU J J, ZHAI D G, et al. Mineral paragenesis and ore-forming processes of the Dongping gold deposit, Hebei Province, China[J]. Resource Geology, 2019, 69(3): 287-313.
DOI URL |
[36] |
GREGORY M J, LANG J R, GILBERT S, et al. Geometallurgy of the Pebble porphyry copper-gold-molybdenum deposit, Alaska: implications for gold distribution and paragenesis[J]. Economic Geology, 2013, 108(3): 463-482.
DOI URL |
[37] |
PRENDERGAST K, CLARKE G W, PEARSON N J, et al. Genesis of pyrite-Au-As-Zn-Bi-Te zones associated with Cu-Au skarns: evidence from the Big Gossan and Wanagon gold deposits, Ertsberg district, Papua, Indonesia[J]. Economic Geology, 2005, 100(5): 1021-1050.
DOI URL |
[38] |
COCKERTON A B D, TOMKINS A G. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, Northwest Tasmania[J]. Economic Geology, 2012, 107(4): 667-682.
DOI URL |
[39] |
SOLOVIEV S G, KRYAZHEV S G, DVURECHENSKAYA S S, et al. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 2019, 112: 103039.
DOI URL |
[40] |
ZHOU H Y, SUN X M, WU Z W, et al. Mineralogy of Bi-sulfosalts and tellurides from the Yaoan gold deposit, Southwest China: metallogenic implications[J]. Ore Geology Reviews, 2018, 98: 126-140.
DOI URL |
[41] |
ZHOU H Y, SUN X M, FU Y, et al. Mineralogy and mineral chemistry of Bi-minerals: constraints on ore genesis of the Beiya Giant Porphyry-skarn gold deposit, Southwestern China[J]. Ore Geology Reviews, 2016, 79: 408-424.
DOI URL |
[42] |
XIE G Q, MAO J W, RICHARDS J P, et al. Distal Au deposits associated with Cu-Au skarn mineralization in the Fengshan Area, Eastern China[J]. Economic Geology, 2019, 114(1): 127-142.
DOI URL |
[43] | 韩颖霄, 谢桂青. 鄂东南鸡笼山夕卡岩型金铜矿床金、银、碲、铋的赋存状态及其对成矿条件的制约[J]. 岩石矿物学杂志, 2016, 35(4): 655-676. |
[44] | 张伟, 王宏强, 邓晓东, 等. 鄂东南地区鸡冠嘴铜金矿床Au-Ag-Bi-Te-Se矿物学研究与金银富集机理[J]. 岩石学报, 2016, 32(2): 456-470. |
[45] |
VIKENTYEV I V, BELOGUB E V, NOVOSELOV K A, et al. Metamorphism of volcanogenic massive sulphide deposits in the Urals[J]. Ore Geology Reviews, 2017, 85: 30-63.
DOI URL |
[46] |
HASSAN L Y, ROBERTS M P. Tellurides associated with volcanogenic massive sulfide (VMS) mineralization at Yuinmery and Austin, Western Australia[J]. Ore Geology Reviews, 2017, 80: 352-362.
DOI URL |
[47] |
TOURIGNY G, DOUCET D, BOURGET A. Geology of the Bousquet 2 Mine: an example of a deformed, gold-bearing, polymetallic sulfide deposit[J]. Economic Geology, 1993, 88(6): 1578-1597.
DOI URL |
[48] |
REVAN M K, GENÇ Y, MASLENNIKOV V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149.
DOI URL |
[49] | SHIKAZONO N, NAKATA M, SHIMIZU M. Geochemical, mineralogic and geologic characteristics of Se-and Te-bearing epithermal gold deposits in Japan[J]. Mining Geology, 1990, 40: 337-352. |
[50] |
SHIMIZU T, MATSUEDA H, ISHIYAMA D, et al. Genesis of epithermal Au-Ag mineralization of the Koryu Mine, Hokkaido, Japan[J]. Economic Geology, 1998, 93(3): 303-325.
DOI URL |
[51] |
LIU J J, ZHENG M H, LIU J M, et al. Geochemistry of the La'erma and Qiongmo Au-Se Deposits in the Western Qinling Mountains, China[J]. Ore Geology Reviews, 2000, 17(1/2): 91-111.
DOI URL |
[52] | AYUPOVA N R, MASLENNIKOV V V, MASLENNIKOVA S P, et al. Rare mineral and trace element assemblages in submarine supergene zone at the Devonian Molodezhnoye VMS deposit, the Urals, Russia [C]. Proceedings of the 13 SGA Biennial Meeting. Mineral resources in a sustainable world. Nancy, France: Universitéde Lorraine, 2015: 2051-2054. |
[53] | NEKRASOV I Y, LUNIN S E. Conditions for the formation of silver sulfides, selenides and sulfoselenides of the Ag-Sb-S-Se system (as to the experiment data)[J]. Mineralogical Magazine, 1987, 9: 25-28. |
[54] |
PLOTINSKAYA O Y, KOVALENKER V A, SELTMANN R, et al. Te and Se mineralogy of the high-sulfidation Kochbulak and Kairagach epithermal gold telluride deposits (Kurama Ridge, Middle Tien Shan, Uzbekistan)[J]. Mineralogy and Petrology, 2006, 87(3/4): 187-207.
DOI URL |
[55] |
VIKENTYEV I V. Precious metal and telluride mineralogy of large volcanic-hosted massive sulfide deposits in the Urals[J]. Mineralogy and Petrology, 2006, 87(3/4): 305-326.
DOI URL |
[56] |
MASLENNIKOV V V, MASLENNIKOVA S P, LARGE R R, et al. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia[J]. Mineralogy and Petrology, 2013, 107(1): 67-99.
DOI URL |
[57] | JOHN D A, VIKRE P G, DU BRAY E A, et al. Descriptive models for epithermal gold-silver deposits: U.S. geological survey scientific investigations report[M]. Virginia: U.S. Geological Survey, 2018, 1-264. |
[58] | SCHULZ K J, DEYOUNG J H Jr, SEAL R R II, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply [R]. Virginia: US Geological Survey, 2017:1-797. |
[59] |
CHOUINARD A, PAQUETTE J, WILLIAMS-JONES A E. Crystallographic Controls on Trace-element Incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile Argentina[J]. The Canadian Mineralogist, 2005, 43(3): 951-963.
DOI URL |
[60] | POPESCU G C, NEACSU A. Tellurium—Mineralogy, resources, energetic implications[C]// Gold-silver-telluride deposits of the golden quadrilateral, South Apuseni Mts., Romania: guidebook of the International Field Workshop of IGCP project 486. Alba Iulia: International Association on the Genesis of Ore Deposits (IAGOD), 2004, 12: 19-25. |
[61] | JACOBSON M I, KELLER J W, ATKINSON W W JR. The where of mineral names: Moctezumite, Moctezuma Mine (La Bambolla Mine), Moctezuma, Municipality of Moctezuma, State of Sonora, Mexico[J]. Rocks & Minerals, 2018, 93(5): 466-471. |
[62] | 薛良伟, 柴世刚, 朱嘉伟, 等. 小秦岭金矿伴生碲资源研究[J]. 矿产保护与利用, 2004(2): 42-45. |
[63] |
VOUDOURIS P, MELFOS V, MAVROGONATOS C, et al. Amethyst occurrences in Tertiary volcanic rocks of Greece: mineralogical, fluid inclusion and oxygen isotope constraints on their genesis[J]. Minerals, 2018, 8(8): 324.
DOI URL |
[64] |
GAO S, XU H, LI S R, et al. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China[J]. Ore Geology Reviews, 2017, 80: 166-184.
DOI URL |
[65] |
COOK N J, CIOBANU C L, MAO J W. Textural control on gold distribution in as-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China)[J]. Chemical Geology, 2009, 264(1/2/3/4): 101-121.
DOI URL |
[66] |
MUNTEAN J L, CLINE J S, SIMON A C, et al. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits[J]. Nature Geoscience, 2011, 4(2): 122-127.
DOI URL |
[67] | LEVINE R M. The mineral industry of Uzbekistan[C]// Area reports: International-Europe and Central Eurasia: U.S. Geological Survey Minerals Yearbook 2009. Virginia: U.S. Geological Survey, 2011, III: 49.1-49.7. |
[68] | JOHN D A, TAYLOR R D. By-products of porphyry copper and molybdenum deposits[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. New York: Society of Economic Geologists, 2016: 137-164. |
[69] |
MASLENNIKOV V V, MASLENNIKOVA S P, LARGE R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64-106.
DOI URL |
[70] | SAFIROVA E. The mineral industry of Russia[C]// Area reports: International-Europe and Central Eurasia: U.S. Geological Survey Minerals Yearbook 2010. Virginia: U.S. Geological Survey, 2012, III: 38.1-38.1. |
[71] |
LAYTON-MATTHEWS D, LEYBOURNE M I, PETER J M, et al. Multiple sources of selenium in ancient seafloor hydrothermal systems: compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada[J]. Geochimica et Cosmochimica Acta, 2013, 117: 313-331.
DOI URL |
[72] |
ZHAI D G, WILLIAMS-JONES A E, LIU J J, et al. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113(6): 1359-1382.
DOI URL |
[73] |
LIU J J, LIU J M, ZHENG M H, et al. The Au-Se paragenesis in Cambrian stratabound gold deposits, western Qinling mountains, China[J]. International Geology Review, 2000, 42(11): 1037-1045.
DOI URL |
[74] | MAO J, LI Y, GOLDFARB R, et al. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization?[J]. Economic Geology, 2003, 98(3): 517-534. |
[75] |
WANG D Z, LIU J J, ZHAI D G, et al. New founding of molybdenite and Re-Os geochronological implication in the Dongping gold deposit, Hebei province, China[J]. Acta Geologica Sinica (English Edition), 2019, 93: 769-770.
DOI URL |
[76] | JENSEN E P, BARTON M D. Gold deposits related to alkaline magmatism[M]// HAGEMANN S G, BROWN P E. Gold in 2000. New York: Society of Economic Geologists, 2000: 279-314. |
[77] |
SCHIRMER T, KOSCHINSKY A, BAU M. The ratio of tellurium and selenium in geological material as a possible paleo-redox proxy[J]. Chemical Geology, 2014, 376: 44-51.
DOI URL |
[78] |
WEN H J, CARIGNAN J. Selenium isotopes trace the source and redox processes in the black shale-hosted se-rich deposits in China[J]. Geochimica et Cosmochimica Acta, 2011, 75(6): 1411-1427.
DOI URL |
[79] |
GRUNDLER P V, BRUGGER J, ETSCHMANN B E, et al. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition[J]. Geochimica et Cosmochimica Acta, 2013, 120: 298-325.
DOI URL |
[80] |
SMITH D J, NADEN J, JENKIN G R T, et al. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J]. Ore Geology Reviews, 2017, 89: 772-779.
DOI URL |
[81] | DYACCHKOVA I B, KHODAKOVSKIY I L. Thermodynamic equilibria in the systems S-H2O, Se-H2O, and Te-H2O in the 25-300 ℃ temperature range and their geochemical interpretations[J]. Geochemistry International, 1968, 5: 1108-1125. |
[82] | YAMAMOTO M. Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals[J]. Mineralium Deposita, 1976, 11(2): 197-209. |
[83] |
LAROCQUE A C L, STIMAC J A, SIEBE C, et al. Deposition of a high-sulfidation Au assemblage from a magmatic volatile phase, Volcán Popocatépetl, Mexico[J]. Journal of Volcanology and Geothermal Research, 2008, 170(1/2): 51-60.
DOI URL |
[84] |
FULIGNATI P, SBRANA A. Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy)[J]. Journal of Volcanology and Geothermal Research, 1998, 86(1/2/3/4): 187-198.
DOI URL |
[85] |
FROST B R, MAVROGENES J A, TOMKINS A G. Partial melting of sulfide ore deposits during medium-and high-grade metamorphism[J]. The Canadian Mineralogist, 2002, 40(1): 1-18.
DOI URL |
[86] | MEINERT L D. Gold in skarns related to epizonal intrusions[M]// HAGEMANN S G, BROWN P E. Gold in 2000. New York: Society of Economic Geologists, 2000: 347-375. |
[87] | DOUGLAS N, MAVROGENES J, HACK A, et al. The liquid bismuth collector model: an alternative gold deposition mechanism[C]. Sydney: 15th Australlia Geological Convension, 2000, 59: 135. |
[88] |
OBERTHÜR T, WEISER T W. Gold-bismuth-telluride-sulphide assemblages at the Viceroy Mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe[J]. Mineralogical Magazine, 2008, 72(4): 953-970.
DOI URL |
[89] |
TOMBROS S, SEYMOUR K S, WILLIAMS-JONES A E. Controls on tellurium in base, precious, and telluride minerals in the Panormos Bay Ag-Au-Te deposits, Tinos Island, Cyclades, Greece[J]. Economic Geology, 2010, 105(6): 1097-1111.
DOI URL |
[90] | SIMMONS S F, WHITE N C, JOHN D A. Geological characteristics of epithermal precious and base metal deposits[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. New York: Society of Economic Geologists, 2005:485-522. |
[91] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic Terran[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. New York: Society of Economic Geologists, 2005: 407-450. |
[92] |
HOFSTRA A H, LEVENTHAL J S, NORTHROP H R, et al. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada[J]. Geology, 1991, 19(1): 36-40.
DOI URL |
[93] |
HAYNES D W, CROSS K C, BILLS R T, et al. Olympic Dam ore genesis: a fluid-mixing model[J]. Economic Geology, 1995, 90(2): 281-307.
DOI URL |
[94] | 胡凯. 金矿床中的有机质及其有机成矿作用[J]. 矿物岩石地球化学通报, 1998, 17(2): 4-9. |
[95] | 林丽. 拉尔玛金矿床中的生物作用[M]. 成都: 成都科技大学出版社, 1994. 1-78. |
[96] | 温汉捷, 裘愉卓. 拉尔玛硒-金矿床元素有机/无机结合态及硒的赋存状态研究[J]. 中国科学:D辑, 1999(5): 426-432. |
[97] |
CABRI L J. Phase relations in the Au-Ag-Te systems and their mineralogical significance[J]. Economic Geology, 1965, 60(8): 1569-1606.
DOI URL |
[98] |
ALTREE-WILLIAMS A, PRING A, NGOTHAI Y, et al. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials[J]. Earth-Science Reviews, 2015, 150: 628-651.
DOI URL |
[99] |
PUTNIS A. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry, 2009, 70(1), 87-124.
DOI URL |
[100] |
ZHAO J, BRUGGER J, XIA F, et al. Dissolution-reprecipitation vs. solid-state diffusion: mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions[J]. American Mineralogist, 2013, 98(1): 19-32.
DOI URL |
[101] |
ZHAO J, BRUGGER J, GRUNDLER P V, et al. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: calaverite to metallic gold[J]. American Mineralogist, 2009, 94(11/12): 1541-1555.
DOI URL |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[3] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[4] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[5] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[6] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[7] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[8] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[9] | ZHU Pingping, LIU Yue, CHENG Qiuming. Quantitative determinations of the dispersion pattern and geological significance of geochemical anomalies in Biguo area, Jiaodong Terrane [J]. Earth Science Frontiers, 2023, 30(2): 440-446. |
[10] | ZHANG Hongrui, HOU Zengqian. Thermal regime and metallogenesis of collisional orogens [J]. Earth Science Frontiers, 2022, 29(2): 1-13. |
[11] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[12] | QIN Kezhang, ZHAO Junxing, FAN Hongrui, TANG Dongmei, LI Guangming, YU Kelong, CAO Mingjian, SU Benxun. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 271-294. |
[13] | SONG Yingxin, LI Shengrong, SHEN Junfeng, ZHANG Long, LI Wentao, ZENG Yongjie. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(2): 305-319. |
[14] | OUYANG Xin, ZHANG Yongmei, GU Xuexiang, LIU Li, WANG Luzhi, GAO Liye. Characteristics of fluid inclusions in and metallogensis of the Zhuanshanzi gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(2): 320-332. |
[15] | LI Chenglu, LI Shengrong, YUAN Maowen, DU Bingying, LI Wenlong, Masroor ALAM, LIU Dongyuan, LIU Hao. Genesis of the Keluo Au deposit in the Nenjiang-Heihe tectonic melange belt, Heilongjiang Province: evidence from chemical composition and pyrite He-Ar, S, Pb isotopes [J]. Earth Science Frontiers, 2020, 27(5): 99-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||