Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 1-13.DOI: 10.13745/j.esf.sf.2021.10.36
Previous Articles Next Articles
Received:
2021-09-08
Revised:
2021-11-03
Online:
2022-03-25
Published:
2022-03-31
CLC Number:
ZHANG Hongrui, HOU Zengqian. Thermal regime and metallogenesis of collisional orogens[J]. Earth Science Frontiers, 2022, 29(2): 1-13.
Fig. 2 p-T diagram for metamorphic rocks and xenolith from the Alpine and Himalayan-Tibetan collisional orogens, showing clearly the distinction between cold and hot collisional orogens in p-T conditions.
造山类型 | 冷碰撞 | 热碰撞 | |||||
---|---|---|---|---|---|---|---|
造山带 | 比利牛斯 | 阿尔卑斯 | 加里东 | 扎格罗斯 | 青藏高原 | 华力西 | |
MVT铅锌矿床 | 有 | 有 | 有 | 有 | 有 | ||
造山型金矿 | 有 | 有 | 有 | 有 | 有 | ||
岩浆热液有关铌钽锂铍矿床 | 有 | 有 | |||||
云英岩型钨锡矿床 | 有 | 有 | |||||
斑岩型铜矿床 | 有 | 有 |
Table 1 Mineral deposits in the six collisional orogens
造山类型 | 冷碰撞 | 热碰撞 | |||||
---|---|---|---|---|---|---|---|
造山带 | 比利牛斯 | 阿尔卑斯 | 加里东 | 扎格罗斯 | 青藏高原 | 华力西 | |
MVT铅锌矿床 | 有 | 有 | 有 | 有 | 有 | ||
造山型金矿 | 有 | 有 | 有 | 有 | 有 | ||
岩浆热液有关铌钽锂铍矿床 | 有 | 有 | |||||
云英岩型钨锡矿床 | 有 | 有 | |||||
斑岩型铜矿床 | 有 | 有 |
Fig. 9 p-T diagram showing the thermal regimes, mineral deposits and partial-melting conditions of collisional orogens. Melting curves and wet granite solidus data adapted from [136-137].
[1] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3):2-24.
DOI URL |
[2] | 侯增谦. 大陆碰撞成矿论[J]. 地质学报, 2010, 84(1):30-58. |
[3] | KERRICH R, GOLDFARB R J, RICHARDS J P R, Metallogenic provinces in an evolving geodynamic framework[M]// Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 1097-1136. |
[4] |
GROVES D I, BIERLEIN F P. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society, 2007, 164(1):19-30.
DOI URL |
[5] |
HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3):247-250.
DOI URL |
[6] | 张洪瑞, 侯增谦. 大陆碰撞带成矿作用: 年轻碰撞造山带对比研究[J]. 中国科学: 地球科学, 2018, 48:1629-1654. |
[7] | HERRINGTON R J, ZAYKOV V V, MASLENNIKOV V V, et al. Mineral deposits of the Urals and links to geodynamic evolution[M]// Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 1069-1096. |
[8] | 张洪瑞, 侯增谦. 大陆碰撞造山样式与过程: 来自特提斯碰撞造山带的实例[J]. 地质学报, 2015, 89(9):1539-1559. |
[9] |
HOU Z Q, ZHANG H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015, 70:346-384.
DOI URL |
[10] |
COTTLE J M, LARSON K P, KELLETT D A. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen[J]. Journal of Structural Geology, 2015, 78:119-133.
DOI URL |
[11] |
HOLDER R M, VIETE D R, BROWN M, et al. Metamorphism and the evolution of plate tectonics[J]. Nature, 2019, 572(7769):378-381.
DOI URL |
[12] | National Centers for Environmental Information. color_etopo1_ice_full. [DB/OL]. (2010-09-23) [2021-03-25]. https://www.ngdc.noaa.gov |
[13] |
TORSVIK T H, SMETHURST M A, MEERT J G, et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic: a tale of Baltica and Laurentia[J]. Earth-Science Reviews, 1996, 40(3/4):229-258.
DOI URL |
[14] |
FROITZHEIM N, MILADINOVA I, JANAK M, et al. Devonian subduction and syncollisional exhumation of continental crust in Lofoten, Norway[J]. Geology, 2016, 44(3):223-226.
DOI URL |
[15] |
BROWN D, JUHLIN C, AYALA C, et al. Mountain building processes during continent-continent collision in the Uralides[J]. Earth-Science Reviews, 2008, 89(3/4):177-195.
DOI URL |
[16] |
MATTE P. The Variscan collage and orogeny (48-290 Ma) and the tectonic definition of the Armorica microplate: a review[J]. Terra Nova, 2001, 13(2):122-128.
DOI URL |
[17] |
EDEL J B, SCHULMANN K, SKRZYPEK E, et al. Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the northern Vosges magmatic arc (eastern France)[J]. Journal of the Geological Society, 2013, 170:785-804.
DOI URL |
[18] |
ZHANG H R, HOU Z Q. Metallogenesis within continental collision zones: comparisons of modern collisional orogens[J]. Science China: Earth Sciences, 2018, 61(12):1737-1760.
DOI URL |
[19] |
ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 3(4):495-519.
DOI URL |
[20] |
BROWN M, JOHNSON T. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 2018, 103(2):181-196.
DOI URL |
[21] | HUERTA A D, ROYDEN L H, HODGES K V. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B7):15287-15302. |
[22] |
AGARD P, VITALE-BROVARONE A. Thermal regime of continental subduction: the record from exhumed HP-LT terranes (New Caledonia, Oman, Corsica)[J]. Tectonophysics, 2013, 601:206-215.
DOI URL |
[23] |
JAMIESON R A, BEAUMONT C. On the origin of orogens[J]. Geological Society of America Bulletin, 2013, 125(11/12):1671-1702.
DOI URL |
[24] |
JAMIESON R A, UNSWORTH M J, HARRIS N B W, et al. Crustal melting and the flow of mountains[J]. Elements, 2011, 7(4):253-260.
DOI URL |
[25] |
MAIEROVÁ P, SCHULMANN K, LEXA O, et al. European Variscan orogenic evolution as an analogue of Tibetan-Himalayan orogen: insights from petrology and numerical modeling[J]. Tectonics, 2016, 35(7):1760-1780.
DOI URL |
[26] |
FOSSEN H, CAVALCANTE G C, DE ALMEIDA P. Hot versus cold orogenic behavior: comparing the Araçuaí-West Congo and the Caledonian orogens[J]. Tectonics, 2017, 36(10):2159-2178.
DOI URL |
[27] | BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Crustal channel flows: 1. numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B6). DOI: 10.1029/2003jb002809. |
[28] |
ROLLAND Y, LARDEAUX J M, JOLIVET L, Deciphering orogenic evolution[J]. Journal of Geodynamics, 2012, 56/57:1-6.
DOI URL |
[29] |
RATSCHBACHER L, FRISCH W, NEUBAUER F, et al. Extension in compressional orogenic belts: the eastern Alps[J]. Geology, 1989, 17(5):404-407.
DOI URL |
[30] |
RATSCHBACHER L, FRISCH W, LINZER H G, et al. Lateral extrusion in the eastern Alps, part 2: structural analysis[J]. Tectonics, 1991, 10(2):257-271.
DOI URL |
[31] |
BLISNIUK P M, HACKER B R, GLODNY J, et al. Normal faulting in Central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6847):628-632.
DOI URL |
[32] |
VIOLA G, MANCKTELOW N S, SEWARD D. Late Oligocene-Neogene evolution of Europe-Adria collision: new structural and geochronological evidence from the Giudicarie fault system (Italian eastern Alps)[J]. Tectonics, 2001, 20(6):999-1020.
DOI URL |
[33] |
SMIT M A, HACKER B R, LEE J. Tibetan garnet records early Eocene initiation of thickening in the Himalaya[J]. Geology, 2014, 42(7):591-594.
DOI URL |
[34] |
TIAN Z L, ZHANG Z M, DONG X. Constraining the age of high-pressure metamorphism of paragneisses from the eastern Himalayan syntaxis using zircon petrochronology and phase equilibria[J]. Geological Society, London, Special Publications, 2018, 474(1):331-352.
DOI URL |
[35] |
GOSCOMBE B, GRAY D, FOSTER D A. Metamorphic response to collision in the Central Himalayan orogen[J]. Gondwana Research, 2018, 57:191-265.
DOI URL |
[36] |
HACKER B R, GNOS E, RATSCHBACHER L, et al. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 2000, 287(5462):2463-2466.
DOI URL |
[37] |
DING L, KAPP P, YUE Y H, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, Central Tibet[J]. Earth and Planetary Science Letters, 2007, 254(1/2):28-38.
DOI URL |
[38] | JOLIVET M, BRUNEL M, SEWARD D, et al. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: new constraints on the age of the Kunlun Fault[J]. Tectonics, 2003, 22(5). DOI: 10.1029/2002tc001428. |
[39] | WIEDERKEHR M, BOUSQUET R, SCHMID S M, et al. From subduction to collision: thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge[C]// Orogenic Processes in the Alpine Collision Zone, 2008: 127-155. |
[40] |
RATSCHBACHER L, DINGELDEY C, MILLER C, et al. Formation, subduction, and exhumation of Penninic oceanic crust in the eastern Alps: time constraints from 40Ar/39Ar geochronology[J]. Tectonophysics, 2004, 394(3/4):155-170.
DOI URL |
[41] |
ST-ONGE M R, RAYNER N, PALIN R M, et al. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya[J]. Journal of Metamorphic Geology, 2013, 31(5):469-504.
DOI URL |
[42] |
WILKE F D H, O’BRIEN P J, ALTENBERGER U, et al. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes[J]. Lithos, 2010, 114(1/2):70-85.
DOI URL |
[43] |
WILKE F D H, O’BRIEN P J, GERDES A, et al. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages[J]. European Journal of Mineralogy, 2010, 22(5):703-719.
DOI URL |
[44] |
JI W Q, MALUSÀ M G, TIEPOLO M, et al. Synchronous Periadriatic magmatism in the western and Central Alps in the absence of slab breakoff[J]. Terra Nova, 2019, 31(2):120-128.
DOI URL |
[45] |
FARYAD S W, KACHLÍK V, SLÁMA J, et al. Implication of corona formation in a metatroctolite to the granulite facies overprint of HP-UHP rocks in the Moldanubian Zone (Bohemian Massif)[J]. Journal of Metamorphic Geology, 2015, 33(3):295-310.
DOI URL |
[46] |
FARYAD S W, FIŠERA M. Olivine-bearing symplectites in fractured garnet from eclogite, Moldanubian Zone (Bohemian Massif)-a short-lived, granulite facies event[J]. Journal of Metamorphic Geology, 2015, 33(6):597-612.
DOI URL |
[47] |
JEDLICKA R, FARYAD S W, HAUZENBERGER C. Prograde metamorphic history of UHP granulites from the Moldanubian Zone (Bohemian Massif) revealed by major element and Y+REE zoning in garnets[J]. Journal of Petrology, 2015, 56(10):2069-2088.
DOI URL |
[48] |
SAMPERTON K M, SCHOENE B, COTTLE J M, et al. Magma emplacement, differentiation and cooling in the middle crust: integrated zircon geochronological-geochemical constraints from the Bergell intrusion, Central Alps[J]. Chemical Geology, 2015, 417:322-340.
DOI URL |
[49] |
JI L, LIU F, WANG F, et al. Mineral phase equilibria and zircon geochronology constrain multiple metamorphic events of high-pressure pelitic granulites in south-eastern Tibetan Plateau[J]. Geological Journal, 2020, 55(2):1332-1356.
DOI URL |
[50] |
LUSTRINO M, DUGGEN S, ROSENBERG C L. The Central-Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting[J]. Earth-Science Reviews, 2011, 104(1/2/3):1-40.
DOI URL |
[51] |
WILKE F D H, O’BRIEN P J, SCHMIDT A, et al. Subduction, peak and multi-stage exhumation metamorphism: traces from one coesite-bearing eclogite, Tso Morari, western Himalaya[J]. Lithos, 2015, 231:77-91.
DOI URL |
[52] |
XU Y G, LAN J B, YANG Q J, et al. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet[J]. Chemical Geology, 2008, 255(3/4):439-453.
DOI URL |
[53] |
JI W Q, WU F Y, CHUNG S L, et al. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 2016, 44(4):283-286.
DOI URL |
[54] |
PALIN R M, SEARLE M P, WATERS D J, et al. A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the Day Nui Con Voi metamorphic core complex, North Vietnam: constraints on the timing of metamorphism within the Red River shear zone[J]. Journal of Metamorphic Geology, 2013, 31(4):359-387.
DOI URL |
[55] | 侯增谦, 许博, 郑远川, 等. 地幔通道流: 青藏高原大规模生长的深部机制[J]. 科学通报, 2021, 66(21):2671-2690. |
[56] |
LU Y J, KERRICH R, CAWOOD P A, et al. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: constraints on the relationship of magmatism to the Jinsha suture[J]. Gondwana Research, 2012, 22(2):737-747.
DOI URL |
[57] |
CORRIE S L, KOHN M J. Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models[J]. Geological Society of America Bulletin, 2011, 123(9/10):1863-1879.
DOI URL |
[58] |
LEACH D, MACQUAR J C, LAGNEAU V, et al. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France[J]. Geofluids, 2006, 6(1):24-44.
DOI URL |
[59] |
VELASCO F, HERRERO J M, YUSTA I, et al. Geology and geochemistry of the Reocin zinc-lead deposit, Basque-Cantabrian Basin, northern Spain[J]. Economic Geology, 2003, 98(7):1371-1396.
DOI URL |
[60] |
BRADLEY D C, LEACH D L. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 2003, 38(6):652-667.
DOI URL |
[61] |
LIU Y C, KENDRICK M A, HOU Z Q, et al. Hydrothermal fluid origins of carbonate-hosted Pb-Zn deposits of the Sanjiang thrust belt, Tibet: indications from noble gases and halogens[J]. Economic Geology, 2017, 112(5):1247-1268.
DOI URL |
[62] |
PETTKE T, DIAMOND L W, KRAMERS J D. Mesothermal gold lodes in the north-western Alps: a review of genetic constraints from radiogenic isotopes[J]. European Journal of Mineralogy, 2000, 12(1):213-230.
DOI URL |
[63] |
NEUBAUER F. Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt[J]. Geological Society, London, Special Publications, 2002, 204(1):81-102.
DOI URL |
[64] |
GOLDFARB R J, GROVES D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233:2-26.
DOI URL |
[65] |
HORNER J, NEUBAUER F, PAAR W H, et al. Structure, mineralogy, and Pb isotopic composition of the As-Au-Ag deposit Rotgülden, eastern Alps (Austria): significance for formation of epigenetic ore deposits within metamorphic domes[J]. Mineralium Deposita, 1997, 32(6):555-568.
DOI URL |
[66] |
AMANN G, PAAR W H, NEUBAUER F, et al. Auriferous arsenopyrite-pyrite and stibnite mineralization from the Siflitz-Guginock area (Austria): indications for hydrothermal activity during Tertiary oblique terrane accretion in the eastern Alps[J]. Geological Society, London, Special Publications, 2002, 204(1):103-117.
DOI URL |
[67] |
PFAFF K, HILDEBRANDT L H, LEACH D L, et al. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany[J]. Mineralium Deposita, 2010, 45(7):647-666.
DOI URL |
[68] |
ILLIES J H, GREINER G. Rhinegraben and the Alpine system[J]. Geological Society of America Bulletin, 1978, 89(5):770.
DOI URL |
[69] |
SCHWARZ M, HENK A. Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling[J]. International Journal of Earth Sciences, 2005, 94(4):732-750.
DOI URL |
[70] |
SCHROLL E, RANTITSCH G. Sulphur isotope patterns from the Bleiberg deposit (eastern Alps) and their implications for genetically affiliated lead-zinc deposits[J]. Mineralogy and Petrology, 2005, 84(1/2):1-18.
DOI URL |
[71] |
HENJES-KUNST E, RAITH J G, BOYCE A J. Micro-scale sulfur isotope and chemical variations in sphalerite from the Bleiberg Pb-Zn deposit, eastern Alps, Austria[J]. Ore Geology Reviews, 2017, 90:52-62.
DOI URL |
[72] |
SPANGENBERG J E, HERLEC U. Hydrocarbon biomarkers in the Topla-Mezica zinc-lead deposits, northern Karavanke/Drau Range, Slovenia: paleoenvironment at the site of ore formation[J]. Economic Geology, 2006, 101(5):997-1021.
DOI URL |
[73] | TAYLOR R D, LEACH D L, BRADLEY D C, et al. Compilation of mineral resource data for Mississippi Valley-type and clastic-dominated sediment-hosted lead-zinc deposits[R]. Reston: U.S. Geological Survey, 2009: 1-42. |
[74] |
GRENNE T, IHLEN P M, VOKES F M. Scandinavian Caledonide metallogeny in a plate tectonic perspective[J]. Mineralium Deposita, 1999, 34(5/6):422-471.
DOI URL |
[75] |
BILLSTRÖM K, BROMAN C, LARSSON A, et al. Sandstone-hosted Pb-Zn deposits along the margin of the Scandinavian Caledonides and their possible relationship with nearby Pb-Zn vein mineralisation[J]. Ore Geology Reviews, 2020, 127:103839.
DOI URL |
[76] |
DUANE M J, DE WIT M J. Pb-Zn ore deposits of the northern Caledonides: products of continental-scale fluid mixing and tectonic expulsion during continental collision[J]. Geology, 1988, 16(11):999-1002.
DOI URL |
[77] |
ALLEN R L, WEIHED P, SVENSON S A. Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden[J]. Economic Geology, 1996, 91(6):1022-1053.
DOI URL |
[78] |
HOU Z Q, ZHANG H R, PAN X F, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1/2):21-45.
DOI URL |
[79] |
AGHAZADEH M, HOU Z Q, BADRZADEH Z, et al. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology[J]. Ore Geology Reviews, 2015, 70:385-406.
DOI URL |
[80] |
SHAFIEI B, HASCHKE M, SHAHABPOUR J. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran[J]. Mineralium Deposita, 2008, 44(3):265-283.
DOI URL |
[81] |
RICHARDS J P, SPELL T, RAMEH E, et al. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan[J]. Economic Geology, 2012, 107(2):295-332.
DOI URL |
[82] |
YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/2/3):133-159.
DOI URL |
[83] |
CALAGARI A A. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran[J]. Journal of Asian Earth Sciences, 2004, 23(2):179-189.
DOI URL |
[84] |
HEZARKHANI A. Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit[J]. Journal of Asian Earth Sciences, 2006, 27(5):598-612.
DOI URL |
[85] | 刘英超, 宋玉财, 侯增谦, 等. 伊朗扎格罗斯碰撞造山带马拉耶尔—伊斯法罕碳酸盐岩容矿铅锌成矿带: 矿床基本特征与成因类型[J]. 地质学报, 2015, 89(9):1573-1594. |
[86] |
EHYA F, LOTFI M, RASA I. Emarat carbonate-hosted Zn-Pb deposit, Markazi Province, Iran: a geological, mineralogical and isotopic (S, Pb) study[J]. Journal of Asian Earth Sciences, 2010, 37(2):186-194.
DOI URL |
[87] |
GILG H A, BONI M, BALASSONE G, et al. Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex[J]. Mineralium Deposita, 2006, 41(1):1-16.
DOI URL |
[88] |
LIAGHAT S, MOORE F, JAMI M. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the Simply Folded Belt of the Zagros Mountains, SW Iran[J]. Mineralium Deposita, 2000, 35(1):72-78.
DOI URL |
[89] |
ALIYARI F, RASTAD E, MOHAJJEL M. Gold deposits in the Sanandaj-Sirjan Zone: orogenic gold deposits or intrusion-related gold systems?[J]. Resource Geology, 2012, 62(3):296-315.
DOI URL |
[90] | ALIYARI F, RASTAD E. Geochemistry of REE and trace elements and their application in exploration of Qolqoleh orogenic gold deposit, northwestern Iran[C]. 17th International Goldschmidth Conference, 2007. |
[91] |
ALIYARI F, RASTAD E, MOHAJJEL M, et al. Geology and geochemistry of D-O-C isotope systematics of the Qolqoleh gold deposit, northwestern Iran: implications for ore genesis[J]. Ore Geology Reviews, 2009, 36(4):306-314.
DOI URL |
[92] |
MORITZ R, GHAZBAN F, SINGER B S. Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen[J]. Economic Geology, 2006, 101(8):1497-1524.
DOI URL |
[93] | MEHRABI B, FAZEL E T, SHAHABIFAR M. Ore mineralogy and fluid inclusions constraints on genesis of the Muteh gold deposit (western Iran)[J]. Geopersia, 2012, 2(1):67-90. |
[94] |
NIROOMAND S, GOLDFARB R J, MOORE F, et al. The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, northwestern Iran[J]. Mineralium Deposita, 2011, 46(4):409-428.
DOI URL |
[95] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110(6):1541-1575.
DOI URL |
[96] |
ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47(2):135-138.
DOI URL |
[97] | 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2):123-144. |
[98] | 张洪瑞, 杨天南, 侯增谦, 等. “三江”北段茶曲帕查矿区构造变形与铅锌矿化[J]. 岩石矿物学杂志, 2011, 30(3):463-474. |
[99] | 张洪瑞, 杨天南, 侯增谦, 等. 三江北段东莫扎抓矿区构造变形特征[J]. 岩石学报, 2013, 29(4):1145-1155. |
[100] |
SUN X M, ZHANG Y, XIONG D X, et al. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China[J]. Ore Geology Reviews, 2009, 36(1/2/3):235-249.
DOI URL |
[101] |
DENG J, WANG Q F, LI G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138:268-299.
DOI URL |
[102] |
YANG Z S, HOU Z Q, MENG X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3):194-212.
DOI URL |
[103] |
ZHAI W, SUN X M, YI J Z, et al. Geology, geochemistry, and genesis of orogenic gold-antimony mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 2014, 58:68-90.
DOI URL |
[104] |
HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2):139-155.
DOI URL |
[105] |
LU Y J, LOUCKS R R, FIORENTINI M L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet[J]. Geology, 2015, 43(7):583-586.
DOI URL |
[106] |
ZHANG H R, YANG T N, HOU Z Q, et al. Structural controls on carbonate-hosted Pb-Zn mineralization in the Dongmozhazhua deposit, Central Tibet[J]. Ore Geology Reviews, 2017, 90:863-876.
DOI URL |
[107] |
YALIKUN Y, XUE C J, SYMONS D T A. Paleomagnetic age and tectonic constraints on the genesis of the giant Jinding Zn-Pb deposit, Yunnan, China[J]. Mineralium Deposita, 2018, 53(2):245-259.
DOI URL |
[108] |
SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and ore controls[J]. Gondwana Research, 2019, 75:249-281.
DOI URL |
[109] |
LIU Y C, HOU Z Q, YANG Z S, et al. Formation of the Dongmozhazhua Pb-Zn deposit in the thrust-fold setting of the Tibetan Plateau, China: evidence from fluid inclusion and stable isotope data[J]. Resource Geology, 2011, 61(4):384-406.
DOI URL |
[110] |
LIU Y C, YANG Z S, TIAN S H, et al. Fluid origin of fluorite-rich carbonate-hosted Pb-Zn mineralization of the Himalayan-Zagros collisional orogenic system: a case study of the Mohailaheng deposit, Tibetan Plateau, China[J]. Ore Geology Reviews, 2015, 70:546-561.
DOI URL |
[111] |
WANG Q F, GROVES D I, DENG J, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55(6):1085-1104.
DOI URL |
[112] |
CHEN Y, LIU J L, DUNG T M, et al. Regional metallogenesis of the Chang’an gold ore deposit in western Yunnan: evidences from fluid inclusions and stable isotopes[J]. Acta Geologica Sinica, 2010, 84(6):1401-1414.
DOI URL |
[113] | 毕献武, 胡瑞忠. 墨江金矿成矿流体的形成演化机制[J]. 地质论评, 1997, 43(4):381-387. |
[114] | 李元. 云南金厂金矿床蚀变超基性岩体与金的成矿作用[J]. 地质与勘探, 1998, 34(5):30-34. |
[115] | 谢桂青, 胡瑞忠, 倪培, 等. 云南墨江金矿床含金石英脉中流体包裹体的地球化学特征及其意义[J]. 矿物学报, 2001, 21(4):613-618. |
[116] |
ZHAO Y, WANG Q F, SUN X, et al. Characteristics of ore-forming fluid in the Zhenyuan gold orefield, Yunnan Province, China[J]. Journal of Earth Science, 2013, 24(2):203-211.
DOI URL |
[117] | 聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3):373-385. |
[118] | 杨竹森, 侯增谦, 高伟, 等. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 2006, 80(9):1377-1391. |
[119] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. |
[120] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8):871-880. |
[121] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7):745-765. |
[122] |
CUNEY M, FRIEDRICH M, BLUMENFELD P, et al. Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations: a comparison with Sn, W and Au[J]. Tectonophysics, 1990, 177(1/2/3):39-57.
DOI URL |
[123] |
MARIGNAC C, CUNEY M. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt[J]. Mineralium Deposita, 1999, 34(5/6):472-504.
DOI URL |
[124] | SELTMANN R, FARAGHER A E. Collisional orogens and their related metallogeny- A preface[M]// SELTMANN R, KAMPF H, MOLLER P. Metallogeney of collisional orogens. Prague: Czech Geological Survey, 1994: 7-20. |
[125] |
BOUCHOT V, LEDRU P, LEROUGE C, et al. 5: Late Variscan mineralizing systems related to orogenic processes: the French Massif Central[J]. Ore Geology Reviews, 2005, 27(1/2/3/4):169-197.
DOI URL |
[126] |
CATHELINEAU M, BOIRON M C, HOLLIGER P, et al. Metallogenesis of the French part of the Variscan orogen. Part II: time-space relationships between U, Au and Sn-W ore deposition and geodynamic events: mineralogical and U-Pb data[J]. Tectonophysics, 1990, 177(1/2/3):59-79.
DOI URL |
[127] |
NORONHA F. Fluids and variscan metallogenesis in granite related systems in Portugal[J]. Procedia Earth and Planetary Science, 2017, 17:1-4.
DOI URL |
[128] |
CATHELINEAU M, BOIRON M C, MARIGNAC C, et al. High pressure and temperatures during the early stages of tungsten deposition at Panasqueira revealed by fluid inclusions in topaz[J]. Ore Geology Reviews, 2020, 126:103741.
DOI URL |
[129] |
NEIVA A M R, ANDRÁŠ P, RAMOS J M F. Antimony quartz and antimony-gold quartz veins from northern Portugal[J]. Ore Geology Reviews, 2008, 34(4):533-546.
DOI URL |
[130] |
NĖMEC M, ZACHARIÁ$\dot{S}$ J. The Krásná Hora, Milešov, and P$\dot{r}$í$\dot{c}$ovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation[J]. Mineralium Deposita, 2018, 53(2):225-244.
DOI URL |
[131] |
WAGNER T, COOK N J. Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems[J]. Mineralium Deposita, 2000, 35(2/3):206-222.
DOI URL |
[132] |
EPP T, WALTER B F, SCHARRER M, et al. Quartz veins with associated Sb-Pb-Ag±Au mineralization in the Schwarzwald, SW Germany: a record of metamorphic cooling, tectonic rifting, and element remobilization processes in the Variscan belt[J]. Mineralium Deposita, 2019, 54(2):281-306.
DOI URL |
[133] |
BOIRON M C, CATHELINEAU M, BANKS D A, et al. Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition[J]. Chemical Geology, 2003, 194(1/2/3):119-141.
DOI URL |
[134] |
POCHON A, GLOAGUEN E, BRANQUET Y, et al. Variscan Sb-Au mineralization in Central Brittany (France): a new metallogenic model derived from the Le Semnon district[J]. Ore Geology Reviews, 2018, 97:109-142.
DOI URL |
[135] |
CHEVAL-GARABÉDIAN F, FAURE M, MARCOUX E, et al. The La Bellière gold and antimony district (French Armorican Massif): a two-stage evolution model controlled by Variscan strike-slip tectonic[J]. Ore Geology Reviews, 2020, 125:103681.
DOI URL |
[136] |
HERMANN J, SPANDLER C J. Sediment melts at sub-arc depths: an experimental study[J]. Journal of Petrology, 2008, 49(4):717-740.
DOI URL |
[137] | HERMANN J, RUBATTO D. Subduction of continental crust to mantle depth[M]. Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 309-340. |
[1] | ZHU Ge, LIU Shaowen, LI Xianglan, WU Di. Geothermal regime of the lower reaches of Yangtze River and implications for resource exploration [J]. Earth Science Frontiers, 2020, 27(1): 25-34. |
[2] | ZHANG Yuqing, ZHANG Changhou, HOU Liyu, ZHANG Yipeng, HUANG Yingzhu, CHEN Hanlin, CHANG Lizhong. Superposed folding since the Permian on both sides of the Xar Moron Suture, southeastern Inner Mongolia: implications for syn- and post-collision geodynamic process [J]. Earth Science Frontiers, 2019, 26(2): 264-280. |
[3] | DENG Jinfu,LIU Cui,DI Yongjun,FENG Yanfang,SU Shangguo,XIAO Qinhui,ZHAO Guochun. Crustal convergent and accretional consumption zones, and continent-continent collisional orogenes and subductionaccretional orogenes: Records from the igneous petrotectonic assemblages. [J]. Earth Science Frontiers, 2016, 23(6): 34-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||