Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 261-276.DOI: 10.13745/j.esf.sf.2024.2.5
Previous Articles Next Articles
WU Yiping(), WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing
Received:
2023-12-30
Revised:
2024-02-19
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
WU Yiping, WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing. Research on helium charging and accumulation mechanism in Rukwa Rift Basin in Tanzania[J]. Earth Science Frontiers, 2025, 32(2): 261-276.
储层 | 地层 | 沉积环境 | 储层岩性 | 储层孔隙度/% | 渗透率/mD | 特征 | 盖层 |
---|---|---|---|---|---|---|---|
上湖层A和 B | 更新统 | 滨岸带河 流沉积 | 分选良好、细-中粒 砂岩,交错层理发育 | 19.6 | 2 200 | 沿边界断层 形成良好储层 | 碳酸盐岩、泥岩、 现代薄层蒸发岩 |
上湖层 B | 上中新统 | ||||||
红色砂岩C | 渐新统 | 辫状冲积 河道砂岩 | 浅黄到白色的 石英砂岩, 净毛比40% | 13~26 | 170~390 | 粒间孔为主,占0~16%;粒内孔占2%~15% | Nsungwe组块状碳酸盐火山灰烬/凝灰岩,伊利石-蒙脱石是主要的黏土矿物 |
红色砂岩D | 上白垩统 Galula组 | 厚度600~3 000 m, 辫状冲积河道砂岩 | 26,变化大 | ||||
卡鲁超群E | 二叠系- 下三叠统 | 砂岩 | >12 | 最大1 320, 平均143 | 储集能力强 | 层间泥岩 | |
基底F | 前寒武系 | 变质岩 | 变化大 | 顶部泥岩 |
Table 1 Main reservoir and cap characteristics of RRB
储层 | 地层 | 沉积环境 | 储层岩性 | 储层孔隙度/% | 渗透率/mD | 特征 | 盖层 |
---|---|---|---|---|---|---|---|
上湖层A和 B | 更新统 | 滨岸带河 流沉积 | 分选良好、细-中粒 砂岩,交错层理发育 | 19.6 | 2 200 | 沿边界断层 形成良好储层 | 碳酸盐岩、泥岩、 现代薄层蒸发岩 |
上湖层 B | 上中新统 | ||||||
红色砂岩C | 渐新统 | 辫状冲积 河道砂岩 | 浅黄到白色的 石英砂岩, 净毛比40% | 13~26 | 170~390 | 粒间孔为主,占0~16%;粒内孔占2%~15% | Nsungwe组块状碳酸盐火山灰烬/凝灰岩,伊利石-蒙脱石是主要的黏土矿物 |
红色砂岩D | 上白垩统 Galula组 | 厚度600~3 000 m, 辫状冲积河道砂岩 | 26,变化大 | ||||
卡鲁超群E | 二叠系- 下三叠统 | 砂岩 | >12 | 最大1 320, 平均143 | 储集能力强 | 层间泥岩 | |
基底F | 前寒武系 | 变质岩 | 变化大 | 顶部泥岩 |
序号 | 降低氦气系统风险 的重要程度 | 有效的氦气聚集的 时间序列 |
---|---|---|
1 | 氦源(至关重要) | 储层沉积的质量 |
2 | 储层(通常很多,但必须与 有效盖层和圈闭相匹配) | 合适的盖层沉积 |
3 | 盖层(同储层) | 圈闭形成 |
4 | 圈闭(构造、地层):一个封闭的 空间,阻止流体浮力到地表 | 充注:氦气从基底到 圈闭的释放和运移 |
Table 2 Importance sequence of helium system elements in RRB
序号 | 降低氦气系统风险 的重要程度 | 有效的氦气聚集的 时间序列 |
---|---|---|
1 | 氦源(至关重要) | 储层沉积的质量 |
2 | 储层(通常很多,但必须与 有效盖层和圈闭相匹配) | 合适的盖层沉积 |
3 | 盖层(同储层) | 圈闭形成 |
4 | 圈闭(构造、地层):一个封闭的 空间,阻止流体浮力到地表 | 充注:氦气从基底到 圈闭的释放和运移 |
编号 | 温泉名称 | 数据来源 文献 | He含量/% | CO2含量/ % | N2含量/ % | 氩含量/ % | HCO3- 含量/% | CH4 含量/% | 离最近的火山 距离/km | 水温/ ℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | Rukwa2#/Rukwa2#b | [ | 2.49 | 96.0 | ||||||
2 | Ivuna | [ | 8~10.2 | |||||||
3 | Rock of Hades | [ | 4.2 | 0.8 | 87.5 | 0 | 5.4 | 139 | 66 | |
4 | Songwe Rambo | [ | 0.01 | 97.2 | 2.1 | 79.9 | 0.1 | 40 | 65 | |
5 | Maji ya Weta | [ | 0.06 | 89.9 | 9.8 | 71.1 | 43 | 72 | ||
6 | Mtagata | [ | 0.01 | 6.4 | 90.9 | 1.1 | 55 | 0.5 | 135 | 57 |
7 | Utete | [ | 0.25 | 12.4 | 83.9 | 0 | 0.8 | 147 | 58 | |
8 | Songwe River | [ | 0.01 | 99.2 | 0.6 | 0.1 | 40 | 55 | ||
9 | Rukwa1#/MMCT001 | [ | 0.005 | |||||||
10 | Rukwa1#/MMCT002 | 0.004 |
Table 3 Hot spring gas components in RRB and its periphery
编号 | 温泉名称 | 数据来源 文献 | He含量/% | CO2含量/ % | N2含量/ % | 氩含量/ % | HCO3- 含量/% | CH4 含量/% | 离最近的火山 距离/km | 水温/ ℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | Rukwa2#/Rukwa2#b | [ | 2.49 | 96.0 | ||||||
2 | Ivuna | [ | 8~10.2 | |||||||
3 | Rock of Hades | [ | 4.2 | 0.8 | 87.5 | 0 | 5.4 | 139 | 66 | |
4 | Songwe Rambo | [ | 0.01 | 97.2 | 2.1 | 79.9 | 0.1 | 40 | 65 | |
5 | Maji ya Weta | [ | 0.06 | 89.9 | 9.8 | 71.1 | 43 | 72 | ||
6 | Mtagata | [ | 0.01 | 6.4 | 90.9 | 1.1 | 55 | 0.5 | 135 | 57 |
7 | Utete | [ | 0.25 | 12.4 | 83.9 | 0 | 0.8 | 147 | 58 | |
8 | Songwe River | [ | 0.01 | 99.2 | 0.6 | 0.1 | 40 | 55 | ||
9 | Rukwa1#/MMCT001 | [ | 0.005 | |||||||
10 | Rukwa1#/MMCT002 | 0.004 |
温泉名称及空气气样 | 4He含量/ (10-2cm3·cm-3STP) | 20Ne含量/ (10-5cm3·cm-3STP) | 40A r含量/ (10-2cm3·cm-3STP) | N2含量/ (cm3·cm-3STP) |
---|---|---|---|---|
Rukwa | 0.004 7(0.000 2) | 0.014(0.000 4) | 0.029(0.000 8) | |
Rukwa | 0.004 3(0.000 2) | 0.012(0.000 3) | 0.025(0.000 6) | |
Ivuna | 2.5(0.04) | 0.02(0.001 1) | 0.46(0.002) | 0.96 |
Air | 0.000 524(0.000 006) | 1.65(0.003 6) | 0.93(0.001) | 0.78 |
Table 4 Content of rare gases including helium. Adapted from [12,14].
温泉名称及空气气样 | 4He含量/ (10-2cm3·cm-3STP) | 20Ne含量/ (10-5cm3·cm-3STP) | 40A r含量/ (10-2cm3·cm-3STP) | N2含量/ (cm3·cm-3STP) |
---|---|---|---|---|
Rukwa | 0.004 7(0.000 2) | 0.014(0.000 4) | 0.029(0.000 8) | |
Rukwa | 0.004 3(0.000 2) | 0.012(0.000 3) | 0.025(0.000 6) | |
Ivuna | 2.5(0.04) | 0.02(0.001 1) | 0.46(0.002) | 0.96 |
Air | 0.000 524(0.000 006) | 1.65(0.003 6) | 0.93(0.001) | 0.78 |
温泉名称及空气气样 | 3He/4He | 20Ne/22Ne | 21Ne/22Ne | 40Ar/36Ar | 38Ar/36Ar |
---|---|---|---|---|---|
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Ivuna | 0.18(0.01) Ra | 9.68(0.029) | 0.032(0.000 4) | 787 (0.8) | 0.185(0.000 3) |
Air | 1 Ra | 9.80(0.080) | 0.029(0.000 3) | 295.5 (0.5) | 0.188(0.000 4) |
Table 5 Isotope table of rare gases including helium. Adapted from [6,12].
温泉名称及空气气样 | 3He/4He | 20Ne/22Ne | 21Ne/22Ne | 40Ar/36Ar | 38Ar/36Ar |
---|---|---|---|---|---|
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Ivuna | 0.18(0.01) Ra | 9.68(0.029) | 0.032(0.000 4) | 787 (0.8) | 0.185(0.000 3) |
Air | 1 Ra | 9.80(0.080) | 0.029(0.000 3) | 295.5 (0.5) | 0.188(0.000 4) |
区域和裂谷作用前最后一次热构造事件时间 | 地质事件 | 生氦量/m3 | 源区面积/km2 | 参数来源文献 |
---|---|---|---|---|
坦桑尼亚克拉通 (2.4 Ga) | 最后的变质作用 | 1.7× 1013 | 350 000 | [ |
Ubendian带 (570 Ma) | 泛非造山运动的再次改造 | 7.4× 1011 | 75 000 | [ |
Usagaran带区南部 (570 Ma) | 泛非造山运动的再次改造 | 5.7× 1011 | 57 600 | [ |
北坦桑尼亚辐散带(2.0 Ga) | 坦桑尼亚克拉通的堆积 | 1.6× 1012 | 42 500 | [ |
鲁夸盆地基底(570 Ma) | 泛非造山运动改造 | 2.9 × 1011 | 12 800 | [ |
鲁夸盆地沉积(260 Ma) | 卡鲁超群沉积 | 7.4 × 1010 | 12 800 | [ |
Table 6 Helium generation within 10 km depth since the last tectonic movement in the Tanzania Craton
区域和裂谷作用前最后一次热构造事件时间 | 地质事件 | 生氦量/m3 | 源区面积/km2 | 参数来源文献 |
---|---|---|---|---|
坦桑尼亚克拉通 (2.4 Ga) | 最后的变质作用 | 1.7× 1013 | 350 000 | [ |
Ubendian带 (570 Ma) | 泛非造山运动的再次改造 | 7.4× 1011 | 75 000 | [ |
Usagaran带区南部 (570 Ma) | 泛非造山运动的再次改造 | 5.7× 1011 | 57 600 | [ |
北坦桑尼亚辐散带(2.0 Ga) | 坦桑尼亚克拉通的堆积 | 1.6× 1012 | 42 500 | [ |
鲁夸盆地基底(570 Ma) | 泛非造山运动改造 | 2.9 × 1011 | 12 800 | [ |
鲁夸盆地沉积(260 Ma) | 卡鲁超群沉积 | 7.4 × 1010 | 12 800 | [ |
圈闭类型 | 构造位置 | 圈闭数/个 | 圈闭面积/ km2 | 风险前Pmean资源量/ (108m3) | 风险后Pmean资源量/ (108m3) | 资源量占比/ % |
---|---|---|---|---|---|---|
BMFC | 边界断层下盘 | 12 | 528 | 57.4 | 7.8 | 64.6 |
4WAY | 盆地中部 | 12 | 315 | 11.7 | 1.6 | 13.2 |
3WAY | 盆地中部 | 10 | 216 | 19.8 | 2.7 | 22.2 |
合计 | 34 | 1 059 | 88.9 | 12.1 | 100 |
Table 7 Risked helium undiscovered resources of 34 leads in the RRB
圈闭类型 | 构造位置 | 圈闭数/个 | 圈闭面积/ km2 | 风险前Pmean资源量/ (108m3) | 风险后Pmean资源量/ (108m3) | 资源量占比/ % |
---|---|---|---|---|---|---|
BMFC | 边界断层下盘 | 12 | 528 | 57.4 | 7.8 | 64.6 |
4WAY | 盆地中部 | 12 | 315 | 11.7 | 1.6 | 13.2 |
3WAY | 盆地中部 | 10 | 216 | 19.8 | 2.7 | 22.2 |
合计 | 34 | 1 059 | 88.9 | 12.1 | 100 |
[1] | 贾凌霄, 马冰, 王欢, 等. 全球氦气勘探开发进展与利用现状[J]. 中国地质, 2022, 49(5): 1427-1437. |
[2] |
陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449.
DOI |
[3] |
李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501.
DOI |
[4] | 李玉宏, 王行运, 韩伟. 渭河盆地氦气资源远景调查进展与成果[J]. 中国地质调查, 2015, 2(6): 1-6. |
[5] | BROWN A A. Formation of high helium gases: a guide for explorationists[C/OL]// Proceedings of 2010 AAPG conference. New Oleans:AAPG, 2010: 11-14 [2025-2-17]. https://www.searchanddiscovery.com/. |
[6] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[7] | BARRY P H, LAWSON M, MEURER W P, et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field[J]. Geochimica et Cosmochimica Acta, 2016, 194: 291-309. |
[8] | MTILI K M, BYRNE D J, TYNE R L, et al. The origin of high helium concentrations in the gas fields of southwestern Tanzania[J]. Chemical Geology, 2021, 585: 120542. |
[9] | IDLEMAN B D, ZEITLER P K, MCDANNELL K T. Characterization of helium release from apatite by continuous ramped heating[J]. Chemical Geology, 2018, 476: 223-232. |
[10] | KUSKY T M, POLAT A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305(1/2/3): 43-73. |
[11] | MUIRHEAD J D, FISCHER T P, OLIVA S J, et al. Displaced cratonic mantle concentrates deep carbon during continental rifting[J]. Nature, 2020, 582: 67-72. |
[12] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[13] | DESHPANDE R D, GUPTA S K. Groundwater helium: an indicator of active tectonic regions along Narmada River, central India[J]. Chemical Geology, 2013, 344: 42-49. |
[14] | DIVEENA D, JON G G, COLIN G M, et.al. The principles of helium exploration[J]. Petroleum Geoscience, 2022, 47(1): 481-538. |
[15] | DELALANDE M, BERGONZINI L, GHERARDI F, et al. Fluid geochemistry of natural manifestations from the Southern Poroto-Rungwe hydrothermal system (Tanzania): preliminary conceptual model[J]. Journal of Volcanology and Geothermal Research, 2010, 199: 127-141. |
[16] | JUSTYN W, ZANDER B. 3D seismic surveys-update[EB/OL].(2022-2-03) [2023-2-08]. https://noblehelium.com.au/north-rukwa-project. |
[17] | IAN S, LORNA B, EAMES S, et al. Helium one AGM presentation final verified[EB/OL].(2023-2-15) [2024-2-06]. https://www.helium-one.com/wp-content/uploads/2023/02/230215_Helium-One_AGM_Presentation_Final_verified.pdf. |
[18] | MADUHU S, YALAMANCHILI S R, WEBER J, et al. Eyasi-wembere basin, Tanzania: hydrocarbon prospectivity and structural interpretation through the integration of airborne gravity gradient and magnetic survey results[C]// Proceedings of 2017 SEG international exposition and annual meeting. Houston: Society of Exploration Geophysicists, 2017: 1781-1785. |
[19] | REISCH M S. New method used to discover potential helium source[J]. Chemical and Engineering News, 2016, 94(27): 1-2. |
[20] | MULAYA E, GLUYAS J, MCCAFFREY K, et al. Structural geometry and evolution of the Rukwa Rift Basin, Tanzania: implications for helium potential[J]. Basin Research, 2022, 34(2): 938-960. |
[21] | EBINGER C, DJOMANI Y P, MBEDE E, et al. Rifting Archaean lithosphere: the Eyasi-Manyara-Natron rifts, East Africa[J]. Journal of the Geological Society, 1997, 154(6): 947-960. |
[22] | FOSTER A, EBINGER C, MBEDE E, et al. Tectonic development of the northern taiizaiiian sector of the East African Rift System[J]. Journal of the Geological Society, 1997, 154(4): 689-700. |
[23] | BONIFACE N, SCHENK V. Neoproterozoic eclogites in the Paleoproterozoic Ubendian belt of Tanzania: evidence for a pan-African suture between the Bangweulu Block and the Tanzania Craton[J]. Precambrian Research, 2012, 208: 72-89. |
[24] | BONIFACE N, SCHENK V, APPEL P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): evidence from monazite and zircon geochronology, and geochemistry[J]. Precambrian Research, 2012, 192: 16-33. |
[25] | MTELELA C, ROBERTS E M, DOWNIE R, et al. Interplay of structural, climatic, and volcanic controls on late quaternary lacustrine-deltaic sedimentation patterns in the western branch of the East African Rift System, Rukwa Rift Basin, Tanzania[J]. Journal of Sedimentary Research, 2016, 86(10): 1179-1207. |
[26] | HARÐARSON B S. The western branch of the East African Rift: a review of tectonics, volcanology and geothermal activity[C]// Proceedings of 39th Geothermal Resources Council annual meeting. Geothermal:always on. Reno: Geothermal Resources Council, 2015: 215-220. |
[27] | DAWSON J B. The Gregory rift valley and Neogene-recent volcanoes of Northern Tanzania[J]. Mineralogical Magazine, 2010, 74(4): 801-802. |
[28] | ROBERTS E M, STEVENS N J, O’CONNOR P M, et al. Initiation of the western branch of the East African Rift coeval with the eastern branch[J]. Nature Geoscience, 2012, 5(4): 289-294. |
[29] | WESCOTT W A, KREBS W N, ENGELHARDT D W, et al. New biostratigraphic age dates from the Lake Rukwa Rift Basin in western Tanzania: geologic note (1)[J]. AAPG Bulletin, 1991, 75(7): 1255-1263. |
[30] | WHEELER W H, KARSON J A. Extension and subsidence adjacent to a “weak” continental transform: an example from the Rukwa Rift, East Africa[J]. Geology, 1994, 22(7): 625-628. |
[31] | REDDY S M, COLLINS A S, BUCHAN C, et al. Heterogeneous excess argon and Neoproterozoic heating in the Usagaran Orogen, Tanzania, revealed by single grain 40Ar/39Ar thermochronology[J]. Journal of African Earth Sciences, 2004, 39(3/4/5): 165-176. |
[32] | DELVAUX D, KERVYN F, VITTORI E, et al. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin[J]. Journal of African Earth Sciences, 1998, 26(3): 397-421. |
[33] | BAIYEGUNHI C. The correlation of dry density and porosity of some rocks from the Karoo Supergroup: a case study of selected rock types between Grahamstown and Queenstown in the Eastern Cape Province, South Africa[J]. IOSR Journal of Engineering, 2014, 4(12): 30-40. |
[34] | MORLEY C K, CUNNINGHAM S M, HARPER R M, et al. Geology and geophysics of the Rukwa Rift, East Africa[J]. Tectonics, 1992, 11(1): 69-81. |
[35] | ROBERTS E M, O’CONNOR P M, GOTTFRIED M D. et al. Revised stratigraphy and age of the Red Sandstone Group in the Rukwa Rift Basin, Tanzania[J]. Cretaceous Research, 2004, 25(5): 749-759. |
[36] | O’CONNOR P M, GOTTFRIED M D, STEVENS N J, et al. A new vertebrate fauna from the Cretaceous red sandstone group, Rukwa Rift Basin, southwestern Tanzania[J]. Journal of African Earth Sciences, 2006, 44(3): 277-288. |
[37] |
陶士振, 吴义平, 陶小晚, 等. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367.
DOI |
[38] |
吴义平, 王青, 陶士振, 等. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350.
DOI |
[39] | WALKER B G. Springs of deep-seated origin in Tanzania[J]. Journal of Hydrology, 1971, 12(2): 170-171. |
[40] | BARRY P H, HILTON D R, FISCHER T P, et al. Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe volcanic province, southern Tanzania[J]. Chemical Geology, 2013, 339: 141-156. |
[41] | WEERARATNE D S, FORSYTH D W, FISCHER K M, et al. Evidence for an upper mantle plume beneath the Tanzanian Craton from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B9): 2427. |
[42] | PINNA P, CALVEZ J, ABESSOLO A, et al. Neoproterozoic events in the Tcholliré area: pan-African crustal growth and geodynamics in central-northern Cameroon (Adamawa and North Provinces)[J]. Journal of African Earth Sciences, 1994, 18: 347-353. |
[43] | MUIRHEAD J D, KATTENHORN S A. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa[J]. Journal of Structural Geology, 2018, 106: 1-18. |
[44] | REINERS P W, FARLEY K A. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3845-3859. |
[45] | MACKINTOSH S J, BALLENTINE C J. Using 3He/4He isotope ratios to identify the source of deep reservoir contributions to shallow fluids and soil gas[J]. Chemical Geology, 2012, 304: 142-150. |
[46] | KOSMBAEVA G T, AUBAKIROV Y A, TASTANOVA L K, et al. Petroleum resources management systems(PRMS)[J]. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2021, 3(47): 80-86. |
[47] |
刘金华, 葛政俊, 李晓凤. 苏北盆地CO2气藏成藏规律及富氦成因[J]. 天然气地球科学, 2023, 34(3): 477-485.
DOI |
[48] | ROBERTS E M, O’CONNOR P M, STEVENS N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: new insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa[J]. Journal of African Earth Sciences, 2010, 57(3): 179-212. |
[49] | 吴义平, 曹庆超, 李谦, 等. 一种定量预测气藏中氦气含量的方法及装置: CN202311239763.7[P]. 2023-2-15. |
[1] | YANG Jinxiu, WANG Chen, XING Lanchang, WEI Wei, ZHANG Wei, HAN Weifeng, ZHAO Li, LIU Kunyi. Fluid migration and seabed methane seepage associated with marine gas hydrate systems [J]. Earth Science Frontiers, 2025, 32(2): 113-125. |
[2] | LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 36-60. |
[3] | CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 77-93. |
[4] | REN Jinfeng, CHEN Yuhe, XU Mengjie, LI Tingwei, WANG Xiaoxue, LAI Hongfei, XIE Yingfeng, KUANG Zenggui. Sedimentary characteristics and accumulation model of sand-rich gas hydrate reservoir in the Qiongdongnan Basin, northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 94-112. |
[5] | ZHANG Huishan, SONG Yucai, LI Wenchang, MA Zhongping, ZHANG Jing, HONG Jun, LIU Lei, LÜ Pengrui, WANG Zhihua, ZHANG Haidi, YANG Bo, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt [J]. Earth Science Frontiers, 2025, 32(1): 105-126. |
[6] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
[7] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[8] | LIU Qingqing, WANG Xueqiu, ZHANG Bimin, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, ZHOU Yining, CHANG Chan. Characteristics of boron geochemical anomalies and prediction of boron resource potential in China [J]. Earth Science Frontiers, 2025, 32(1): 50-60. |
[9] | ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan [J]. Earth Science Frontiers, 2025, 32(1): 91-104. |
[10] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[11] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[12] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[13] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
[14] | XU Tianwu, ZHANG Hong’an. Analysis of oil and gas distribution and exploration potential in oil-rich depression: Taking Dongpu Depression as an example [J]. Earth Science Frontiers, 2024, 31(6): 368-380. |
[15] | XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 381-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||