Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 183-193.DOI: 10.13745/j.esf.sf.2024.10.30
Previous Articles Next Articles
ZHAO Yuhao1,2,3(), YANG Zhiming3,*(
), ZHU Yiping1,*(
), Kumul CONRAD4, DU Denghu5, Mosusu NATHAN4, WANG Tiangang1, JIANG Hantao1, YAO Zhongyou1
Received:
2024-07-25
Revised:
2024-10-13
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
ZHAO Yuhao, YANG Zhiming, ZHU Yiping, Kumul CONRAD, DU Denghu, Mosusu NATHAN, WANG Tiangang, JIANG Hantao, YAO Zhongyou. Geochemical characteristics and metallogenic potential of nickel in Papua New Guinea[J]. Earth Science Frontiers, 2025, 32(1): 183-193.
名称 | 矿床/矿化点 | 经度 | 纬度 | 矿化类型 |
---|---|---|---|---|
Mambare | 矿床 | 147.75°E | 8.78°S | 红土型 |
Ramu | 矿床 | 145.20°E | 5.57°S | 红土型 |
Sewa Bay | 矿床 | 151.01°E | 10.03°S | 红土型 |
Wowo Gap | 矿床 | 148.92°E | 9.55°S | 红土型 |
Koreppa | 矿床 | 147.22°E | 7.96°S | 红土型 |
Bovio Hill | 矿床 | 147.03°E | 7.75°S | 红土型 |
Frieda River | 矿床 | 141.93°E | 4.67°S | 红土型 |
Lake Trist | 矿床 | 146.95°E | 7.50°S | 红土型 |
MtBwbweso | 矿化点 | 151.00°E | 10.03°S | 红土型 |
Kumusi River | 矿化点 | 148.02°E | 8.97°S | 红土型 |
Paiawa Drainage | 矿化点 | 147.21°E | 7.61°S | 与层状基性-超基性侵入岩有关 |
Menyama | 矿化点 | 146.01°E | 7.15°S | 红土型 |
Fu River | 矿化点 | 141.86°E | 4.98°S | 与层状基性-超基性侵入岩有关 |
Hak River | 矿化点 | 141.67°E | 4.92°S | 与层状基性-超基性侵入岩有关 |
Korosameri River | 矿化点 | 142.95°E | 4.86°S | 红土型 |
Sitipa River Headwaters | 矿化点 | 142.72°E | 4.74°S | 红土型 |
Cloud Mountain | 矿化点 | 143.04°E | 4.43°S | 红土型 |
Oenake Mountain | 矿化点 | 141.04°E | 2.68°S | 红土型 |
Adau River | 矿化点 | 148.75°E | 9.85°S | 与层状基性-超基性侵入岩有关 |
Table 1 Basic information on nickel deposits and occurrences in PNG. Adapted from [24].
名称 | 矿床/矿化点 | 经度 | 纬度 | 矿化类型 |
---|---|---|---|---|
Mambare | 矿床 | 147.75°E | 8.78°S | 红土型 |
Ramu | 矿床 | 145.20°E | 5.57°S | 红土型 |
Sewa Bay | 矿床 | 151.01°E | 10.03°S | 红土型 |
Wowo Gap | 矿床 | 148.92°E | 9.55°S | 红土型 |
Koreppa | 矿床 | 147.22°E | 7.96°S | 红土型 |
Bovio Hill | 矿床 | 147.03°E | 7.75°S | 红土型 |
Frieda River | 矿床 | 141.93°E | 4.67°S | 红土型 |
Lake Trist | 矿床 | 146.95°E | 7.50°S | 红土型 |
MtBwbweso | 矿化点 | 151.00°E | 10.03°S | 红土型 |
Kumusi River | 矿化点 | 148.02°E | 8.97°S | 红土型 |
Paiawa Drainage | 矿化点 | 147.21°E | 7.61°S | 与层状基性-超基性侵入岩有关 |
Menyama | 矿化点 | 146.01°E | 7.15°S | 红土型 |
Fu River | 矿化点 | 141.86°E | 4.98°S | 与层状基性-超基性侵入岩有关 |
Hak River | 矿化点 | 141.67°E | 4.92°S | 与层状基性-超基性侵入岩有关 |
Korosameri River | 矿化点 | 142.95°E | 4.86°S | 红土型 |
Sitipa River Headwaters | 矿化点 | 142.72°E | 4.74°S | 红土型 |
Cloud Mountain | 矿化点 | 143.04°E | 4.43°S | 红土型 |
Oenake Mountain | 矿化点 | 141.04°E | 2.68°S | 红土型 |
Adau River | 矿化点 | 148.75°E | 9.85°S | 与层状基性-超基性侵入岩有关 |
大陆/国家 | 分析方法 | 样品类型 | 镍元素基准值/(μg·g-1) |
---|---|---|---|
欧洲[ | ICP-AES | 底部土壤 | 18.0 |
顶部土壤 | 14.0 | ||
水系沉积物 | 16.0 | ||
澳大利亚[ | ICP-MS | 顶部沉积物 | 9.8 |
底部沉积物 | 11.6 | ||
美国和加拿大[ | ICP-MS | A层土 | 13.8 |
C层土 | 18.2 |
Table 2 Nickel baselines in sediments/soils of other continents/countries
大陆/国家 | 分析方法 | 样品类型 | 镍元素基准值/(μg·g-1) |
---|---|---|---|
欧洲[ | ICP-AES | 底部土壤 | 18.0 |
顶部土壤 | 14.0 | ||
水系沉积物 | 16.0 | ||
澳大利亚[ | ICP-MS | 顶部沉积物 | 9.8 |
底部沉积物 | 11.6 | ||
美国和加拿大[ | ICP-MS | A层土 | 13.8 |
C层土 | 18.2 |
构造单元 | 样品数 | 镍含量/(μg·g-1) | ||||||
---|---|---|---|---|---|---|---|---|
最小值 | 25% | 50% | 75% | 最大值 | 平均值 | 几何平均值 | ||
巴新 | 1 399 | 2.7 | 26.6 | 42.0 | 68.8 | 2 430.0 | 70.4 | 42.9 |
中央弧陆碰撞带 | 1 049 | 5.6 | 33.4 | 50.6 | 78.5 | 2 430.0 | 84.6 | 54.3 |
美拉尼西亚岩浆弧 | 350 | 2.7 | 12.4 | 22.1 | 36.3 | 263.0 | 28.1 | 21.3 |
巴布亚褶皱带 | 142 | 7.5 | 30.4 | 45.5 | 75.8 | 1 234.0 | 85.9 | 52.7 |
新几内亚逆冲带 | 633 | 6.3 | 31.6 | 46.5 | 76.4 | 2 430.0 | 90.3 | 53.0 |
奥罗褶皱带 | 12 | 34.6 | 50.6 | 64.0 | 83.6 | 137.0 | 68.2 | 63.0 |
东部褶皱带 | 239 | 5.6 | 40.8 | 60.3 | 81.2 | 406.0 | 70.8 | 58.7 |
东巴布亚复合地体 | 7 | 23.0 | 35.2 | 46.3 | 70.0 | 390.0 | 95.7 | 57.8 |
菲尼斯特雷地体 | 16 | 16.3 | 35.5 | 54.7 | 88.5 | 117.0 | 58.7 | 50.1 |
Table 3 The statistical parameters of nickel concentration (μg/g) of stream sediments in different tectonic units
构造单元 | 样品数 | 镍含量/(μg·g-1) | ||||||
---|---|---|---|---|---|---|---|---|
最小值 | 25% | 50% | 75% | 最大值 | 平均值 | 几何平均值 | ||
巴新 | 1 399 | 2.7 | 26.6 | 42.0 | 68.8 | 2 430.0 | 70.4 | 42.9 |
中央弧陆碰撞带 | 1 049 | 5.6 | 33.4 | 50.6 | 78.5 | 2 430.0 | 84.6 | 54.3 |
美拉尼西亚岩浆弧 | 350 | 2.7 | 12.4 | 22.1 | 36.3 | 263.0 | 28.1 | 21.3 |
巴布亚褶皱带 | 142 | 7.5 | 30.4 | 45.5 | 75.8 | 1 234.0 | 85.9 | 52.7 |
新几内亚逆冲带 | 633 | 6.3 | 31.6 | 46.5 | 76.4 | 2 430.0 | 90.3 | 53.0 |
奥罗褶皱带 | 12 | 34.6 | 50.6 | 64.0 | 83.6 | 137.0 | 68.2 | 63.0 |
东部褶皱带 | 239 | 5.6 | 40.8 | 60.3 | 81.2 | 406.0 | 70.8 | 58.7 |
东巴布亚复合地体 | 7 | 23.0 | 35.2 | 46.3 | 70.0 | 390.0 | 95.7 | 57.8 |
菲尼斯特雷地体 | 16 | 16.3 | 35.5 | 54.7 | 88.5 | 117.0 | 58.7 | 50.1 |
镍地球 化学省 | 面积/ km2 | 异常 点数 | 极小值/ (μg·g-1) | 中位数/ (μg·g-1) | 极大值/ (μg·g-1) | 平均值/ (μg·g-1) | 标准差 | 异常规模/ (km2·μg·g-1) | 异常 排序 | 所属构造单元 |
---|---|---|---|---|---|---|---|---|---|---|
Ni01 | 4 304 | 56 | 7.5 | 56.8 | 997.0 | 150.1 | 237.8 | 645 881.3 | 2 | 新几内亚逆冲带 |
Ni02 | 6 070 | 118 | 12.6 | 60.2 | 2 430.0 | 170.7 | 316.6 | 1 036 320.2 | 1 | 新几内亚逆冲带 |
Ni03 | 935 | 11 | 24.7 | 35.9 | 643.0 | 144.6 | 188.1 | 135 218.0 | 7 | 新几内亚逆冲带 |
Ni04 | 1 703 | 22 | 16.7 | 69.4 | 906.0 | 163.0 | 223.0 | 277 573.5 | 6 | 新几内亚逆冲带 |
Ni05 | 2 417 | 26 | 19.3 | 72.7 | 1 234.0 | 159.7 | 252.4 | 385 883.3 | 4 | 巴布亚褶皱带 |
Ni06 | 2 246 | 8 | 43.6 | 120.9 | 390.0 | 153.4 | 123.2 | 344 536.4 | 5 | 东部褶皱带 |
Ni07 | 3 632 | 21 | 44.7 | 115.0 | 350.0 | 136.3 | 78.7 | 495 145.4 | 3 | 东部褶皱带 |
Table 4 Nickel geochemical priovinces of PNG
镍地球 化学省 | 面积/ km2 | 异常 点数 | 极小值/ (μg·g-1) | 中位数/ (μg·g-1) | 极大值/ (μg·g-1) | 平均值/ (μg·g-1) | 标准差 | 异常规模/ (km2·μg·g-1) | 异常 排序 | 所属构造单元 |
---|---|---|---|---|---|---|---|---|---|---|
Ni01 | 4 304 | 56 | 7.5 | 56.8 | 997.0 | 150.1 | 237.8 | 645 881.3 | 2 | 新几内亚逆冲带 |
Ni02 | 6 070 | 118 | 12.6 | 60.2 | 2 430.0 | 170.7 | 316.6 | 1 036 320.2 | 1 | 新几内亚逆冲带 |
Ni03 | 935 | 11 | 24.7 | 35.9 | 643.0 | 144.6 | 188.1 | 135 218.0 | 7 | 新几内亚逆冲带 |
Ni04 | 1 703 | 22 | 16.7 | 69.4 | 906.0 | 163.0 | 223.0 | 277 573.5 | 6 | 新几内亚逆冲带 |
Ni05 | 2 417 | 26 | 19.3 | 72.7 | 1 234.0 | 159.7 | 252.4 | 385 883.3 | 4 | 巴布亚褶皱带 |
Ni06 | 2 246 | 8 | 43.6 | 120.9 | 390.0 | 153.4 | 123.2 | 344 536.4 | 5 | 东部褶皱带 |
Ni07 | 3 632 | 21 | 44.7 | 115.0 | 350.0 | 136.3 | 78.7 | 495 145.4 | 3 | 东部褶皱带 |
镍地球化学 异常区 | 所属地球 化学省 | 面积/km2 | 相关地质单元 | 潜在矿化类型 |
---|---|---|---|---|
(1) | Ni01 | 622 | 白垩纪蛇纹石化橄榄岩(四月蛇绿岩的一部分) | 红土型 |
(2) | Ni02 | 445 | 晚三叠世中基性卡纳(Kana)火山岩 | 红土型 |
(3) | Ni02 | 596 | 中中新世欧珀(Oipo)侵入岩,主要由辉长岩、闪长岩组成 | 红土型 |
(4) | Ni03 | 25 | 白垩纪蛇纹石化橄榄岩(马鲁姆蛇绿岩的一部分) | 红土型 |
(5) | Ni04 | 48 | 晚二叠世库博尔(Kubor)侵入杂岩体 | 红土型 |
(6) | Ni05 | 292 | 上中新世闪长岩,上新世—全新世玄武安山质熔岩 | 红土型 |
(7) | Ni06 | 254 | 早始新世—中渐新世萨多瓦(Sadowa)辉长岩, 上新世芒特戴维森(Mount Davidson)玄武岩 | 红土型 |
(8) | Ni07 | 531 | 晚白垩世—中始新世库图(Kutu)火山岩, 包括玄武岩、辉长岩和超镁铁质岩石 | 红土型/与层状基性- 超基性侵入岩有关 |
Table 5 Nickel geochemical anomalies of PNG
镍地球化学 异常区 | 所属地球 化学省 | 面积/km2 | 相关地质单元 | 潜在矿化类型 |
---|---|---|---|---|
(1) | Ni01 | 622 | 白垩纪蛇纹石化橄榄岩(四月蛇绿岩的一部分) | 红土型 |
(2) | Ni02 | 445 | 晚三叠世中基性卡纳(Kana)火山岩 | 红土型 |
(3) | Ni02 | 596 | 中中新世欧珀(Oipo)侵入岩,主要由辉长岩、闪长岩组成 | 红土型 |
(4) | Ni03 | 25 | 白垩纪蛇纹石化橄榄岩(马鲁姆蛇绿岩的一部分) | 红土型 |
(5) | Ni04 | 48 | 晚二叠世库博尔(Kubor)侵入杂岩体 | 红土型 |
(6) | Ni05 | 292 | 上中新世闪长岩,上新世—全新世玄武安山质熔岩 | 红土型 |
(7) | Ni06 | 254 | 早始新世—中渐新世萨多瓦(Sadowa)辉长岩, 上新世芒特戴维森(Mount Davidson)玄武岩 | 红土型 |
(8) | Ni07 | 531 | 晚白垩世—中始新世库图(Kutu)火山岩, 包括玄武岩、辉长岩和超镁铁质岩石 | 红土型/与层状基性- 超基性侵入岩有关 |
[1] | 王岩, 王登红, 孙涛, 等. 中国镍矿成矿规律的量化研究与找矿方向探讨[J]. 地质学报, 2020, 94(1): 217-240. |
[2] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. |
[3] | 王登红. 战略性关键矿产相关问题探讨[J]. 化工矿产地质, 2019, 41(2): 65-72. |
[4] | MCRAE M E. Nickel, mineral commodity summaries[R]. Washington: Geological Survey, 2023: 122-123. |
[5] | 唐萍芝, 陈欣, 王京. 全球镍资源供需和产业结构分析[J]. 矿产勘查, 2022, 13(1): 152-156. |
[6] | Standard and pool capital IQ[DB/OL]. [2024-01-24]. https://www.capitaliq.spglobal.com/web/client#office/screener?perspective=243327. |
[7] | 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500. |
[8] | 张洪瑞, 侯增谦, 杨志明, 等. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J]. 矿床地质, 2020, 39(3): 501-510. |
[9] | ZHAO Y H, KUMUL C, WANG T G, et al. National-scale geochemical baseline and anomalies of chromium in Papua new Guinea[J]. Minerals, 2023, 13(2): 205. |
[10] | WILLIAMSON A, HANCOCK G. The geology and mineral potential of Papua New Guinea[M]. Papua New Guinea, Port Moresby: Papua New Guinea Department of Mining, 2005: 6-47. |
[11] | SHEPPARD S, CRANFIELD L. Geological framework and mineralization of Papua New Guinea: an update[M]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012: 7-30. |
[12] | HOLM R J, SPANDLER C, RICHARDS S W. Continental collision, orogenesis and arc magmatism of the MioceneMaramuni arc, Papua New Guinea[J]. Gondwana Research, 2015, 28(3): 1117-1136. |
[13] | 姚仲友, 赵宇浩, 王天刚, 等. 巴布亚新几内亚地质、矿产及投资环境[M]. 北京: 地质出版社, 2018. |
[14] | 姚仲友, 赵宇浩, 王天刚, 等. 大洋洲地区地质矿产编图新进展[J]. 地质通报, 2018, 37(增刊1): 510-521. |
[15] | ROGERSON R, HILYARD D B, FRANCIS G, et al. The foreland thrust belt of Papua New Guinea[J]. Proceeding of Pacific Rim International Conference, 1987, 87: 579-583. |
[16] | WANG T G, KUMUL C, ZHAO Y H, et al. National-scale distribution of Cobalt in Papua New Guinea and its significance for mineralization potential[J]. Journal of Geochemical Exploration, 2022, 239: 107013. |
[17] | DOW D B. A geological synthesis of Papua New Guinea[M]. Canberra: Australian Government Public Service, 1977. |
[18] | PIGRAM C J, DAVIES P J, FEARY D A, et al. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: passive margin to foreland basin[J]. Geology, 1989, 17(3): 199. |
[19] | DOBEIER C J, POKE B. 1∶100000 geological map publication series of Papua New Guinea, sheet 7887 Aiome[M]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012. |
[20] | DOBEIER C J, POKE B, WAGNER B. 1∶100000 geological map publication series of Papua New Guinea, Sheet 7886 Minj[M]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012. |
[21] | PIGRAM C J, DAVIES H L. Terranes and accretion history of the New Guinea orogeny[J]. BMR Journal of Australian Geology and Geophysics, 1987, 10: 193-211. |
[22] | WILLIAMSON A, ROGERSON R. Geology and mineralisation of Misima Island[M]. Papua New Guinea, Port Moresby: Geological Survey of Papua New Guinea, 1983: 1-12. |
[23] | JAQUES A L. Petrology and petrogenesis of cumulateperidotites and gabbros from the Marum ophiolite complex, northern Papua New Guinea[J]. Journal of Petrology, 1981, 22(1): 1-40. |
[24] | SAROA D. PNG minerals 2011[R]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012. |
[25] | 王学求, 张必敏, 张勤, 等. 国际地球化学填图技术要求: DD 2021—02[S]. 北京: 中国地质调查局, 2018. |
[26] | 张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42. |
[27] | GRUNSKY E C, DREW L J, SUTPHIN D M. Process recognition in multi-element soil and stream-sediment geochemical data[J]. Applied Geochemistry, 2009, 24(8): 1602-1616. |
[28] | WANG T G, KUMUL C, ZHAO Y H, et al. Assessment of indium prospecting potential in national-scale geochemical perspective, Papua New Guinea[J]. Journal of Geochemical Exploration, 2023, 247: 107156. |
[29] | WANG T G, KUMUL C, ZHAO Y H, et al. National-scale Geochemical Baseline of 69 elements in Papua New Guinea stream sediments[J]. Journal of Geochemical Exploration, 2024, 256: 107355. |
[30] | REIMANN C, ARNOLDUSSEN A, ENGLMAIER P, et al. Element concentrations and variations along a 120-km transect in southern Norway-Anthropogenic vs. geogenic vs. biogenic element sources and cycles[J]. Applied Geochemistry, 2007, 22(4): 851-871. |
[31] | RUDNICK R L, GAO S. Composition of the continental crust[M]// HOLLAND H D, TUREKIAN K K.Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[32] | SALMINEN R, BATISTA M, BIDOVEC M, et al. Geochemical atlas of Europe, part 1, background information, methodology and maps[R]. Finland, Helsinki: Geological survey of Finland Espoo, 2005. |
[33] | SMITH D B, CANNON W F, WOODRUFF L G, et al. Major and trace-element concentrations in soils from two continental-scale transects of the United States and Canada[R]. Washington: Geological Survey, 2005. |
[34] | REIMANN C, DE CARITAT P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J]. Science of the Total Environment, 2017, 578: 633-648. |
[35] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 64-80. |
[36] | DAVIES H L. The geology of New Guinea - the Cordilleran margin of the Australian continent[J]. Episodes, 2012, 35(1): 87-102. |
[37] | 王天刚, 姚仲友, 黄宾, 等. 巴布亚新几内亚构造演化与找矿潜力[J]. 资源调查与环境, 2014, 35(2): 130-135. |
[38] | HOEFLAKEN F, DOBMEIER C J. 1∶100000 geological map publication series of Papua New Guinea, Sheet 7688 Yimas[M]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012. |
[39] | SPIELER O, HOEFLAKEN F. 1∶100000 geological map publication series of Papua New Guinea, Sheet 7488 Double[M]. Papua New Guinea, Port Moresby: Mineral Resources Authority, 2012. |
[40] | DAVIES H L, JAQUES A L. Emplacement of ophiolite in Papua New Guinea[J]. Geological Society, London, Special Publications, 1984, 13(1): 341-349. |
[41] | SMITH I E M. The chemical characterization and tectonic significance of ophiolite terrains in southeastern Papua New Guinea[J]. Tectonics, 2013, 32(2): 159-170. |
[42] | DEMETRIADES A, BIRKE M, ALBANESE S, et al. Continental, regional and local scale geochemical mapping[J]. Journal of Geochemical Exploration, 2015, 154: 1-5. |
[43] | DEMETRIADES A, SMITH D, WANG X Q. General concepts of geochemical mapping at global, regional, and local scales for mineral exploration and environmental purposes[J]. Geochimica Brasiliensis, 2018, 32(2): 136-179. |
[44] | 王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18. |
[45] | WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39. |
[46] | 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480. |
[47] | 黄加忠, 杨明龙, 王晓龙, 等. 四川省瓦岗地区水系沉积物地球化学特征及找矿方向[J]. 华东地质, 2024, 45(3): 332-344. |
[48] | 唐志敏, 张晓东, 张明, 等. 新安江流域土壤元素地球化学特征: 来自岩石建造类型的约束[J]. 华东地质, 2023, 44(2): 172-185. |
[1] | XU Ming, XI Wanwan, ZHAO Yuhao, Conrad KUMUL, WU Datian, Nathan MOSUSU, WANG Tiangang, ZHU Yiping, YAO Zhongyou. Geochemical characteristics and metallogenic prediction of gold in Papua New Guinea [J]. Earth Science Frontiers, 2025, 32(1): 194-204. |
[2] | YAO Chunyan, JIANG Hantao, ZHU Yiping, ZHENG Lu, LI Hanwu, WANG Tiangang, LIU Jun’an, Uribe Luna JESUS. Geochemical background and anomaly characteristics of copper in soils of Mexico on a global scale [J]. Earth Science Frontiers, 2025, 32(1): 236-243. |
[3] | CHEN Yongqing, ZHENG Aoyue, FEI Jinna, ZHAO Jie, ZHAO Pengda. Application of 2D-EMD/PCA in gold and key metals prospecting in Jiaodong [J]. Earth Science Frontiers, 2025, 32(1): 266-282. |
[4] | LI Longxue, WANG Xueqiu, CHI Qinghua, LIU Dongsheng, LIU Hanliang, ZHANG Bimin, ZHOU Jian, XU Shanfa, NIE Lanshi, WANG Wei, LIU Qingqing. Geochemical baseline of nickel in China: Characteristics and influence of geological setting [J]. Earth Science Frontiers, 2025, 32(1): 36-49. |
[5] | WANG Wei, WANG Xueqiu, ZHANG Bimin, LIU Dongsheng, LIU Hanliang, Sounthone LAOLO, Phomsylalai SOUKSAN, CHI Qinghua, ZHOU Jian, HAN Zhixuan. Characterization of gold distribution in sediments and prediction of gold prospectivity in Laos [J]. Earth Science Frontiers, 2025, 32(1): 78-90. |
[6] | ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan [J]. Earth Science Frontiers, 2025, 32(1): 91-104. |
[7] | ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area [J]. Earth Science Frontiers, 2024, 31(3): 392-401. |
[8] | ZHANG Jian, FANG Gui, HE Yubei. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China [J]. Earth Science Frontiers, 2023, 30(2): 316-332. |
[9] | XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, LENG Shuai, LI Tongfei, XIONG Shuangcai. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies [J]. Earth Science Frontiers, 2021, 28(3): 56-66. |
[10] | LI Nan, CAO Rui, YE Huishou, LI Qiang, WANG Yitian, LÜ Xiping, GUO Na, SU Yuanxiang, HAO Jianrui, XIAO Yang, ZHANG Shuai, CHU Wenkai. Three-dimensional modeling and comprehensive quantitative mineral resources assessment: A case study of the Haoyaoerhudong gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(3): 170-189. |
[11] | Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. Yoko-Dovyren layered dunite-troctolite-gabbro massif, North Baikal region, Russia: Structure, composition and use of mineral raw materials [J]. Earth Science Frontiers, 2020, 27(5): 262-279. |
[12] | GUO Qinghai, WU Qifan. Hydrogeochemical anomaly of mercury in the high-temperature geothermal waters in the Rehai hydrothermal area in Tengchong, Yunnan and its indications [J]. Earth Science Frontiers, 2020, 27(1): 103-111. |
[13] | WANG Huaitao,YANG Jing,DU Jun,WANG Jinrong,YAN Zhouquan,WANG Yuxi,REN Wenxiu. Comparison of the ultrabasic rocks associated with Cu-Ni deposits in Beishan and Jinchuan, Gansu Province and those associated with within-plate environment: preliminary results of big data research [J]. Earth Science Frontiers, 2019, 26(4): 94-108. |
[14] | SUN Chunyan,TANG Yao,ZHAO Hao,ZHANG Shiqiang,WANG Donglin,HE Huice,LING Fan,LI Jianhua,HE Yan. Application of widefield electromagnetic method to biogas exploration and prediction of prospective target area in the northern Dongting Basin. [J]. Earth Science Frontiers, 2018, 25(4): 210-225. |
[15] | CAI Shaowu,ZHANG Xintao,ZHANG Jingsi,YU Ya,LIU Teng,LI Ying. Analysis of velocity anomalies of the Qa structure in the BZ1 exploration area, Bozhong sag. [J]. Earth Science Frontiers, 2018, 25(4): 168-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||