Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 262-279.DOI: 10.13745/j.esf.sf.2020.8.2
Special Issue: Research Articles (English)
Previous Articles Next Articles
Svetlana S. Timofeeva1,*(), Evgeniy V. Kislov2, Lyudmila I. Khudyakova3
Received:
2020-06-21
Revised:
2020-08-05
Online:
2020-09-25
Published:
2020-09-25
Contact:
Svetlana S. Timofeeva
CLC Number:
Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. Yoko-Dovyren layered dunite-troctolite-gabbro massif, North Baikal region, Russia: Structure, composition and use of mineral raw materials[J]. Earth Science Frontiers, 2020, 27(5): 262-279.
Parameters | GOST 31108-2016 | Cement with the addition of | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Initial setting time, min. | not earlier than 75 | 250 | 255 | 240 |
Compressive strength, MPa, age 7 days 28 days | at least 16.0 at least 32.5 no more than 52.5 | 21.4 43.0 | 20.5 42.4 | 22.7 42.9 |
Uniformity of volume change (expansion), mm | no more than 10 | 5.4 | 6.1 | 6.9 |
Parameters | GOST 31108-2016 | Cement with the addition of | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Initial setting time, min. | not earlier than 75 | 250 | 255 | 240 |
Compressive strength, MPa, age 7 days 28 days | at least 16.0 at least 32.5 no more than 52.5 | 21.4 43.0 | 20.5 42.4 | 22.7 42.9 |
Uniformity of volume change (expansion), mm | no more than 10 | 5.4 | 6.1 | 6.9 |
Properties | Cement with the addition of | CEM I | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Water absorption, % | 3.31 | 3.35 | 3.61 | 6.65 |
Alkali resistance, % | 0.93 | 0.91 | 0.89 | 0.69 |
Acid resistance, % | 42.17 | 41.38 | 43.96 | 59.37 |
Frost resistance, cycle | 50 | 50 | 50 | 50 |
Properties | Cement with the addition of | CEM I | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Water absorption, % | 3.31 | 3.35 | 3.61 | 6.65 |
Alkali resistance, % | 0.93 | 0.91 | 0.89 | 0.69 |
Acid resistance, % | 42.17 | 41.38 | 43.96 | 59.37 |
Frost resistance, cycle | 50 | 50 | 50 | 50 |
Parameters | Dunite | Wehrlite | Troctolite | GOST 8267-93 |
---|---|---|---|---|
Fraction content Dmin, % | 97.80 | 97.60 | 98.40 | from 90 to 100 |
Fraction content DMax, % | 3.10 | 3.10 | 2.90 | up to 10 |
Fraction content 0.5 (Dmin+ Dmax), % | 50.45 | 50.35 | 50.65 | from 30 to 80 |
Fraction content 1.25 DMax, % | 0.18 | 0.21 | 0.27 | up to 0.5 |
Content of platy (flaky) and needle-shaped grains, % | no | no | no | no more than 50 |
Content of poor rock grains, % | no | no | no | no more than 5 |
Content of dustlike and clay particles, % | 0.7 | 0.7 | 0.8 | no more than 1 |
Content of clay in lumps, % | no | no | no | no more than 0.25 |
Mass loss during decay, % | 1.00 | 1.00 | 1.20 | no more than 3 |
Volumetric bulk weight of crushed stone, kg·m-3 | 1745 | 1739 | 1728 | |
Real density (specific gravity), g·cm-3 | 3.00 | 3.01 | 2.91 | |
Moisture content of crushed stone, % | 0.50 | 0.50 | 0.50 | |
Crushed stone grade by crushing capacity | 1200 | 1200 | 1200 |
Parameters | Dunite | Wehrlite | Troctolite | GOST 8267-93 |
---|---|---|---|---|
Fraction content Dmin, % | 97.80 | 97.60 | 98.40 | from 90 to 100 |
Fraction content DMax, % | 3.10 | 3.10 | 2.90 | up to 10 |
Fraction content 0.5 (Dmin+ Dmax), % | 50.45 | 50.35 | 50.65 | from 30 to 80 |
Fraction content 1.25 DMax, % | 0.18 | 0.21 | 0.27 | up to 0.5 |
Content of platy (flaky) and needle-shaped grains, % | no | no | no | no more than 50 |
Content of poor rock grains, % | no | no | no | no more than 5 |
Content of dustlike and clay particles, % | 0.7 | 0.7 | 0.8 | no more than 1 |
Content of clay in lumps, % | no | no | no | no more than 0.25 |
Mass loss during decay, % | 1.00 | 1.00 | 1.20 | no more than 3 |
Volumetric bulk weight of crushed stone, kg·m-3 | 1745 | 1739 | 1728 | |
Real density (specific gravity), g·cm-3 | 3.00 | 3.01 | 2.91 | |
Moisture content of crushed stone, % | 0.50 | 0.50 | 0.50 | |
Crushed stone grade by crushing capacity | 1200 | 1200 | 1200 |
Parameters | Dunite sand | GOST 8267-93 |
---|---|---|
Total residue on the sieve N 063 | 68.4 | from 65 to 75 |
Modulus of fineness Mf | 2.7 | from 2.5 to 3.0 |
Content of grains of size more than 10 mm, % | no | no more than 5 |
Content of grains of size more than 5 mm, % | no | no more than 20 |
Content of grains of size less than 0.16 mm, % | 4.8 | no more than 10 |
Content of dustlike and clay particles, % | 3.0 | no more than 3 |
Content of clay in lumps, % | 0.45 | no more than 0.5 |
Specific gravity (real density), kg·m-3 | 3000 | |
Bulk mass (density in the loose-bulk state), kg·m-3 | 1900 |
Parameters | Dunite sand | GOST 8267-93 |
---|---|---|
Total residue on the sieve N 063 | 68.4 | from 65 to 75 |
Modulus of fineness Mf | 2.7 | from 2.5 to 3.0 |
Content of grains of size more than 10 mm, % | no | no more than 5 |
Content of grains of size more than 5 mm, % | no | no more than 20 |
Content of grains of size less than 0.16 mm, % | 4.8 | no more than 10 |
Content of dustlike and clay particles, % | 3.0 | no more than 3 |
Content of clay in lumps, % | 0.45 | no more than 0.5 |
Specific gravity (real density), kg·m-3 | 3000 | |
Bulk mass (density in the loose-bulk state), kg·m-3 | 1900 |
Type of coarse aggregate | Type of fine aggregate | Compressive strength, MPa | Density, kg/m3 |
---|---|---|---|
Dunite | Quartz sand | 28.8 | 2730 |
Dunite sand | 32.8 | 2800 | |
Wehrlite | Quartz sand | 28.3 | 2716 |
Dunite sand | 32.0 | 2763 | |
Troctolite | Quartz sand | 28.0 | 2613 |
Dunite sand | 31.5 | 2666 | |
Granite | Quartz sand | 27.3 | 2297 |
Dunite sand | 28.4 | 2358 | |
Gravel | Quartz sand | 26.2 | 2494 |
Dunite sand | 27.8 | 2544 |
Type of coarse aggregate | Type of fine aggregate | Compressive strength, MPa | Density, kg/m3 |
---|---|---|---|
Dunite | Quartz sand | 28.8 | 2730 |
Dunite sand | 32.8 | 2800 | |
Wehrlite | Quartz sand | 28.3 | 2716 |
Dunite sand | 32.0 | 2763 | |
Troctolite | Quartz sand | 28.0 | 2613 |
Dunite sand | 31.5 | 2666 | |
Granite | Quartz sand | 27.3 | 2297 |
Dunite sand | 28.4 | 2358 | |
Gravel | Quartz sand | 26.2 | 2494 |
Dunite sand | 27.8 | 2544 |
Type of additive | Molding method | Average density, kg·m-3 | Firing shrinkage, % | Water absorption, % | Tensile strength, MPa | |
---|---|---|---|---|---|---|
Compression | Bending | |||||
No | Plastic | 2250 | 15.7 | 10.9 | 65.1 | 7.5 |
Pressing | 2280 | 15.0 | 9.8 | 81.6 | 9.5 | |
Dunite | Plastic | 2120 | 6.8 | 8.7 | 31.4 | 4.3 |
Pressing | 2630 | 3.5 | 6.1 | 52.3 | 6.3 | |
Wehrlite | Plastic | 2180 | 7.8 | 8.7 | 30.2 | 4.2 |
Pressing | 2620 | 3.8 | 6.4 | 49.4 | 6.2 | |
Troctolite | Plastic | 1880 | 9.2 | 9.2 | 28.1 | 4.2 |
Pressing | 2620 | 4.1 | 6.7 | 32.1 | 4.6 |
Type of additive | Molding method | Average density, kg·m-3 | Firing shrinkage, % | Water absorption, % | Tensile strength, MPa | |
---|---|---|---|---|---|---|
Compression | Bending | |||||
No | Plastic | 2250 | 15.7 | 10.9 | 65.1 | 7.5 |
Pressing | 2280 | 15.0 | 9.8 | 81.6 | 9.5 | |
Dunite | Plastic | 2120 | 6.8 | 8.7 | 31.4 | 4.3 |
Pressing | 2630 | 3.5 | 6.1 | 52.3 | 6.3 | |
Wehrlite | Plastic | 2180 | 7.8 | 8.7 | 30.2 | 4.2 |
Pressing | 2620 | 3.8 | 6.4 | 49.4 | 6.2 | |
Troctolite | Plastic | 1880 | 9.2 | 9.2 | 28.1 | 4.2 |
Pressing | 2620 | 4.1 | 6.7 | 32.1 | 4.6 |
Raw materials | Unit | Material consumption per 1000 bricks | Processing type and parameters | Area of use |
---|---|---|---|---|
Clay | kg | 2293.2 | Plastic molding, firing at 1050 ℃ and higher | For laying and cladding of external and internal walls of buildings and structures, as well as for laying of foundations |
Magnesium silicate rocks | kg | 1528.8 | ||
Water | l | 764.4 | ||
Clay | kg | 2574.0 | Pressing with a pressure of 40 MPa, firing at 950-1100 ℃ | For laying and cladding of external and internal walls of buildings and structures |
Magnesium silicate rocks | kg | 2574.0 | ||
Water | l | 411.8 |
Raw materials | Unit | Material consumption per 1000 bricks | Processing type and parameters | Area of use |
---|---|---|---|---|
Clay | kg | 2293.2 | Plastic molding, firing at 1050 ℃ and higher | For laying and cladding of external and internal walls of buildings and structures, as well as for laying of foundations |
Magnesium silicate rocks | kg | 1528.8 | ||
Water | l | 764.4 | ||
Clay | kg | 2574.0 | Pressing with a pressure of 40 MPa, firing at 950-1100 ℃ | For laying and cladding of external and internal walls of buildings and structures |
Magnesium silicate rocks | kg | 2574.0 | ||
Water | l | 411.8 |
Parameters | Mineral powder from | Requirements of GOST R 52129-2003 | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Porosity, % | 30.6 | 30.7 | 31.2 | no more than 40 |
Swelling of samples from a mixture of powder with bitumen | 0 | 0 | 0 | no more than 3.0 |
Water resistance of samples from a mixture of powder and bitumen | 0.2 | 0.2 | 0.3 | no more than 0.7 |
Humidity, % by weight | 2.0 | 1.8 | 2.1 | no more than 2.5 |
Real density, kg·m-3 | 3330 | 3340 | 3240 |
Parameters | Mineral powder from | Requirements of GOST R 52129-2003 | ||
---|---|---|---|---|
dunite | wehrlite | troctolite | ||
Porosity, % | 30.6 | 30.7 | 31.2 | no more than 40 |
Swelling of samples from a mixture of powder with bitumen | 0 | 0 | 0 | no more than 3.0 |
Water resistance of samples from a mixture of powder and bitumen | 0.2 | 0.2 | 0.3 | no more than 0.7 |
Humidity, % by weight | 2.0 | 1.8 | 2.1 | no more than 2.5 |
Real density, kg·m-3 | 3330 | 3340 | 3240 |
[1] | ARISKIN A A, DANYUSHEVSKY L V, KONNIKOV E G, et al., 2015. The Dovyren Intrusive Complex (Northern Baikal region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source[J]. Russian Geology and Geophysics, 56:411-434. |
[2] | ARISKIN A, DANYUSHEVSKY L, NIKOLAEV G, et al., 2018. The Dovyren Intrusive Complex (Southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility[J]. Lithos, 302/303:242-262. |
[3] | ARISKIN A A, DANYUSHEVSKY L V, FIORENTINI M L, et al., 2020. Petrology, geochemistry and the origin of sulfide-bearing and PGE-mineralized troctolites from the Konnikov zone in the Yoko-Dovyren layered intrusion[J]. Russian Geology and Geophysics, 61(in press). |
[4] |
ARISKIN A A, KISLOV E V, DANYUSHEVSKY L V, et al., 2016. Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy[J]. Mineralium Deposita, 51:993-1011.
DOI URL |
[5] | ARISKIN A A, KONNIKOV E G, DANYUSHEVSKY L V, et al., 2009. The Dovyren Intrusive Complex: problems of petrology and Ni sulfide mineralization[J]. Geochemistry International, 47:425-453. |
[6] |
ARISKIN A A, KOSTITSYN Y A, KONNIKOV E G, et al., 2013. Geochronology of the Dovyren Intrusive Complex, Northwestern Baikal area, Russia, in the Neoproterozoic[J]. Geochemistry International, 51:859-875.
DOI URL |
[7] | BARRIE C T, MACTAVISH A D, WALFORD P C, et al., 2002. Contact-type and magnetite reef-type Pd-Cu mineralization in ferroan olivine gabbros of the Coldwell Complex, Ontario[M]// CABRI L J. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. [S.l.]: Canadian Institute of Mining, Metallurgy and Petroleum, 54:321-337. |
[8] |
BUCHKO I V, SOROKIN A A, KOTOV A B, et al., 2018. The age and tectonic setting of the Lukinda dunite-gabbro-anorthosite massif in the east of the Selenga-Stanovoi superterrane, Central Asian Fold Belt[J]. Russian Geology and Geophysics, 59:709-717.
DOI URL |
[9] |
CHAI F M, ZHANG Z C, MAO J W, et al., 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: implications for tectonics and genesis of ores[J]. Journal of Asian Earth Sciences, 32(2/3/4):218-235.
DOI URL |
[10] | CHERKASOVA T Y, MAZUROV A K, 2012. Ore minerals in mafic-ultramafic rocks of Burlaksky and Nizhnederbinsky massifs (the East Sayan)[J]. Proceedings of the Russian Mineralogical Society, 141(2):77-82. |
[11] | DEVI K S, LAKSHMI V V, ALAKANANDANA A, 2017. Impacts of cement industry on environment: an overview[J]. Asia Pacific Journal of Research, 1(17):156-161. |
[12] | DISTLER V V, STEPIN A G, 1993. Low-sulfide PGE-bearing unit of the Yoko-Dovyren layered ultrabasic-basic intrusion (Northern Baikal region)[J]. Doklady Akademii Nauk, 328:498-501. |
[13] | ERNST R E, HAMILTON M A, SÖDERLUND U, et al., 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 9:464-469. |
[14] | FERREIRA C F, NALDRETT A J, ASIF M, 1995. Distribution of platinum-group elements in the Niquelandia layered mafic-ultramafic intrusion, Brazil: implications with respect to exploration[J]. Canadian Mineralogist, 33:165-184. |
[15] |
FERSHTATER G B, MONTERO P, BORODINA N S, et al., 1997. Uralian magmatism: an overview[J]. Tectonophysics, 276:87-102.
DOI URL |
[16] |
GAO J F, ZHOU M F, LIGHTFOOT P C, et al., 2012. Origin of PGE-poor and Cu-rich magmatic sulfides from the Kalatongke deposit, Xinjiang, Northwest China[J]. Economic Geology, 107:481-506.
DOI URL |
[17] | GURULEV S A, 1965. Geology and genesis of the Yoko-Dovyren gabbro-peridotite massif[M]. Moscow: Nauka (in Russian). |
[18] | HOU T, ZHANG Z, ENCARNACION J, et al., 2012. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, Southwest China[J]. Ore Geology Reviews, 49:109-127. |
[19] | KARYKOWSKI B T, POLITO P A, MAIER W D, et al., 2017. New insights into the petrogenesis of the Jameson Range layered intrusion and associated Fe-Ti-P-V-PGE-Au mineralisation, West Musgrave Province, Western Australia[J]. Mineralium Deposita, 52:233-255. |
[20] |
KHUDYAKOVA L I, TIMOFEEVA S S, 2018a. Practical use of nonmetalliferous raw materials copper-nickel deposits[J]. South of Russia: Ecology Development, 13(4):157-165.
DOI URL |
[21] |
KHUDYAKOVA L I, TIMOFEEVA S S, 2018b. The use of magnesium-silicate rocks in building material production[J]. IOP Conference Series: Materials Science and Engineering, 451:012042.
DOI URL |
[22] |
KHUDYAKOVA L I, TIMOFEEVA S S, 2019. Technological aspects for the treatment of magnesium silicate waste[J]. IOP Conference Series: Earth and Environmental Science, 229:012029.
DOI URL |
[23] | KHUDYAKOVA L I, VOYLOSHNIKOV O V, 2010. Perspective of ultrabasic rocks using at producing composite cement. News of Higher Educational Institutions[J]. Construction, 1:24-26(in Russian). |
[24] | KHUDYAKOVA L I, VOILOSHNIKOV O V, 2016. Usage of consumption waste in asphalt concretes production[J]. Science Review, 5:208-211. |
[25] | KHUDYAKOVA L I, VOILOSHNIKOV O V, 2017. Prospects of the use of serpentinous rocks as a mineral powder for asphalt concrete[J]. Construction Materials Russia, 9:50-53. |
[26] | KHUDYAKOVA L I, KISLOV E V, VOYLOSHNIKOV O V, 2019. Basic rocks in ore-bearing mafic-ultramafic complexes and their use in practice[J]. Gornyi Zhurnal, 10:25-30. |
[27] | KHUDYAKOVA L I, VOILOSHNIKOV O V, KOTOVA I Y, 2012. Ceramic materials on the base of extraction industry’s waste[J]. Ecology and Industry of Russia, 3:26-27. |
[28] | KHUDYAKOVA L I, VOILOSHNIKOV O V, KOTOVA I Y, 2015. Influence of mechanical activation on process of formation and properties of composite binding materials[J]. Construction Materials Russia, 3:37-41. |
[29] |
KHUDYAKOVA L I, VOILOSHNIKOV O V, KOTOVA I Y, 2018. Building ceramic from mining wastes[J]. Glass and Ceramics, 75(7/8):264-267.
DOI URL |
[30] | KHUDYAKOVA L I, VOILOSHNIKOV O V, TIMOFEEVA S S, 2014. Ways of magnesium silicate waste disposal[J]. Scientific, Practical and Educational-Methodical Journal Life Safety, 12:41-45. |
[31] | KISLOV E V, 1998. The Yoko-Dovyren layered massif[M]. Ulan-Ude: BNTsRAN (in Russian). |
[32] | KISLOV E V, 2020. Blue diopside: geological setting and coloring reasons[J]. Earth Sciences, 65(in press). |
[33] | KISLOV E V, KAMENETSKY V S, VANTEEV V V, 2019. Yoko-Dovyren massif,Irkutsk LIP: genesis of chromitites. Large Igneous Provinces through earth history: mantle plumes, supercontinents, climate change, metallogeny and oil-gas, planetary analogues[C]// Abstract volume of the 7 International Conference. Tomsk: CSTI Publishing House: 66-68. |
[34] | KISLOV E V, MELYAKHOVETSKII A A, 1989. Axinite-quartz veins from diabases of the Ioko-Dovyren Massif (northern Baikal region)[J]. Soviet Geology and Geophysics, 30:118-120. |
[35] | KISLOV E V, ORSOEV D A, 1993. Finding of platinum-group-element-bearing horizons at the Ioko-Dovyren layered massif, Northern Transbaikalia[J]. IAGOD Newsletter: 23. |
[36] | KISLOV E V, ORSOEV D A, KONNIKOV E G, 1993. PGE-bearing horizons of the Ioko-Dovyren layered massif, Northern Transbaikalia, Russia[J]. Terra Nova, 3(Suppl):23. |
[37] | KLEIV R A, THORNHILL M, 2011. Dry magnetic separation of olivine sand[J]. Physicochemical Problems of Mineral Processing, 47:213-228. |
[38] | KONNIKOV E G, 1986. Differentiated ultrabasic-basic complexes in the precambrian rocks of Transbaikalia[M]. Novosibirsk: Nauka (in Russian). |
[39] |
KONNIKOV E G, MEURER W P, NERUCHEV S S, et al., 2000. Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic-ultramafic layered complex, eastern Siberia, Russia[J]. Mineralium Deposita, 35:526-532.
DOI URL |
[40] | KREMENETSKAYA I P, BELYAVSKIY A T, VASILIEVA T N, et al., 2010. Serpentine mineral amorphization in the technology of obtaining magnesia-silicate reagent for immobilizing heavy metals[J]. Chemistry for Sustainable Development, 18:41-49. |
[41] | LACINSKA A M, STYLES M T, BATEMAN K, et al., 2017. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites[J]. Frontiers Earth Science, 5:37. |
[42] |
LAZARO A, BROUWERS H J H, QUERCIA G, et al., 2012. The properties of amorphous nano-silica synthesized by the dissolution of olivine[J]. Chemical Engineering Journal, 211/212:112-121.
DOI URL |
[43] | LIU P P, ZHOU M F, WANG C Y, et al., 2014. Open magma chamber processes in the formation of the Permian Baima mafic-ultramafic layered intrusion, SW China[J]. Lithos, 184:194-208. |
[44] | LU Y, LESHER C M, DENG J, 2019. Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China[J]. Ore Geology Reviews, 107:863-887. |
[45] | LUO L, ZHANG Y, BAO S, et al., 2016. Utilization of iron ore tailings as raw material for portland cement clinker production[J]. Advances in Materials Science and Engineering: 1596047. |
[46] |
MAKAROV V N, MANAKOVA N K, VASIL’EVA T N, et al., 2003. Optimization of olivine processing to obtain magnesium meliorant[J]. Russian Journal of Applied Chemistry, 76(2):171-174.
DOI URL |
[47] | MANUILOVA M M, ZARUBIN V V, 1981. Precambrian Volcanogenic Rocks of the Northern Baikal Region[M]. Leningrad: Nauka (in Russian). |
[48] |
MAO J W, PIRAJNO F, ZHANG Z H, et al., 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 32(2/3/4):184-203.
DOI URL |
[49] | NALDRETT A J, 2004. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. [S.l.]: Springer Verlag: 728. |
[50] | NAQI A, JANG J G, 2019. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review[J]. Sustainability, 11:537. |
[51] | NIKOLAEV G S, KHVOROV D M, 2003. Burakovo-Aganozero layered massif of the trans-onega region: 1. Geochemical structure of the layered series[J]. Geochemistry International, 41:770-786. |
[52] | NOVAKOV R M, 2017. Nickel content in rock-forming and ore minerals of mafite-ultramafite formations of Kamchatka[J]. Mining Informational and Analytical Bulletin (Scientific and Technical Journal), 532:18-29. |
[53] | OELKERS E H, 2001. An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations[J]. Chemical Geology, 175(3/4):485-494. |
[54] | ORSOEV D A, KISLOV E V, KONNIKOV E G, et al., 1995. Localization appropriateness and composition specific features of platinum-bearing horizons of the Ioko-Dovyren layered massif (Northern Transbaikalia)[J]. Doklady Akademii Nauk, 340:225-228. |
[55] | PEREVOZCHIKOV B V, 2011. Tectonic position of chromite-bearing mafic-ultramafic complexes in the Urals[J]. Lithosphere, 4:93-109. |
[56] | RYTSK E Y, SHALAEV V S, RIZVANOVA N G, et al., 2002. The Olokit Zone of the Baikal Fold Region: new isotopic geochronological and geochemical data[J]. Geotectonics, 36:24-35. |
[57] |
SALGADO S S, FERREIRA FILHO C F, CAXITO F A, et al., 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, Riacho do Pontal Orogen: onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil[J]. Journal of South American Earth Sciences, 70:324-339.
DOI URL |
[58] |
SHIRKHANI A, KOUCHAKI-PENCHAH H, AZMOODEH-MISHAMANDANIC A, 2018. Environmental and exergetic impacts of cement production: a case study[J]. Environmental Progress and Sustainable Energy, 37(6):2042-2049.
DOI URL |
[59] |
SPIRIDONOV E M, ORSOEV D A, ARISKIN A A, et al., 2019a. Germanium-rich palladium minerals palladogermanide Pd2Ge, paolovite Pd2(Sn, Ge), and zvyagintsevite in sulfide-bearing anorthosites of the Yoko-Dovyren Pluton, Baikal Area[J]. Geochemistry International, 57:600-603.
DOI URL |
[60] |
SPIRIDONOV E M, ORSOEV D A, ARISKIN A A, et al., 2019b. Hg- and Cd-bearing Pd, Pt, Au, and Ag minerals in sulfide-bearing mafic and ultramafic rocks of the Yoko-Dovyren intrusion in the Baikalides of the Northern Baikal Area[J]. Geochemistry International, 57:42-55.
DOI URL |
[61] |
SPROULE R A, LAMBERT D D, HOATSON D M, 1999. Re-Os isotopic constraints on the genesis of the Sally Malay Ni-Cu-Co deposit, East Kimberley, Western Australia[J]. Lithos, 47(1/2):89-106.
DOI URL |
[62] | STEPANOV V A, MELNIKOV A V, STRIKHA V Y, 2008. Stanovaya nickel province in the Russian Far East Territory[J]. Bulletin of the North-East Scientific Center, Russia Academy of Sciences Far East Branch, 2:13-21. |
[63] |
STREFLER J, AMANN T, BAUER N, et al., 2018. Potential and costs of carbon dioxide removal by enhanced weathering of rocks[J]. Environmental Research Letters, 13:034010.
DOI URL |
[64] | SU B X, 2014. Mafic-ultramafic intrusions in Beishan and Eastern Tianshan at Southern CAOB: petrogenesis, mineralization and tectonic implication[M]. [S.l.]: Springer: 219. |
[65] | SUN B, LIU Y, NIE Z, et al., 2020. Exergy-based resource consumption analysis of cement clinker production using natural mineral and using calcium carbide sludge (CCS) as raw material in China[J]. The International Journal of Life Cycle Assessment (in press). |
[66] |
TEN BERGE H F M, VAN DER MEER H G, STEENHUIZEN J W, et al., 2012. Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (lolium perenne L.): a pot experiment[J]. PloS One, 7(8):e42098.
DOI URL |
[67] |
WANG F, DREISINGER D, JARVIS M, et al., 2019. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions[J]. Chemical Engineering Journal, 360:452-463.
DOI URL |
[68] | YURICHEV A N, CHERNYSHOV A I, 2014. Parental melt and geodynamics of the layered mafic-ultramafic massifs of the Kan block of Eastern Sayan[J]. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 324(1):128-137. |
[69] | ZHANG M, FENG P, LI T, et al., 2019. The petrogenesis of the Permian Podong ultramafic intrusion in the Tarim Craton, Western China: constraints from C-He-Ne-Ar isotopes[J]. Geofluids: 6402571. |
[70] | ZHOU M F, ROBINSON P T, MALPAS J, et al., 2001. Melt/rock interaction and melt evolution in the Sartohay high-Al chromite deposit of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 19:519-536. |
[1] | WANG Yu-Wang, WANG Jing-Ban, WANG Chi-Juan, LONG Ling-Li, LIAO Shen, ZHANG Hui-Qiong, TANG Ping-Zhi. PGE metallogenesis related to maficultramafic complex in North Xinjiang. [J]. Earth Science Frontiers, 2010, 17(1): 139-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||