Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 36-49.DOI: 10.13745/j.esf.sf.2024.10.27
Previous Articles Next Articles
LI Longxue(), WANG Xueqiu*(
), CHI Qinghua, LIU Dongsheng, LIU Hanliang, ZHANG Bimin, ZHOU Jian, XU Shanfa, NIE Lanshi, WANG Wei, LIU Qingqing
Received:
2024-08-08
Revised:
2024-10-11
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
LI Longxue, WANG Xueqiu, CHI Qinghua, LIU Dongsheng, LIU Hanliang, ZHANG Bimin, ZHOU Jian, XU Shanfa, NIE Lanshi, WANG Wei, LIU Qingqing. Geochemical baseline of nickel in China: Characteristics and influence of geological setting[J]. Earth Science Frontiers, 2025, 32(1): 36-49.
全国一级大地 构造单元和主 要岩石类型 | 原始数据 | 剔除离散值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
样品数/ 个 | 最小值/ 10-6 | 25%下四分 位值/10-6 | 50%中位数 基准值/10-6 | 75%上四分 位值/10-6 | 最大值/ 10-6 | 算术平均 值/10-6 | 几何平均 值/10-6 | 背景值/ 10-6 | ||
全国 | 11 602 | 0.34 | 5.54 | 12.1 | 29.0 | 2 789 | 27.8 | 12.5 | 22.2 | |
造山带 | 7 224 | 0.34 | 4.52 | 11.5 | 28.0 | 2 349 | 28.8 | 11.7 | 21.9 | |
克拉通 | 4 378 | 0.37 | 6.98 | 12.9 | 30.7 | 2 789 | 26.1 | 13.9 | 22.4 | |
天山—兴蒙造山带 | 2 749 | 0.34 | 3.52 | 8.94 | 24.4 | 2 349 | 27.3 | 10.1 | 21.5 | |
华北克拉通 | 2 121 | 0.37 | 5.47 | 10.4 | 26.2 | 2 789 | 26.4 | 11.9 | 21.6 | |
塔里木克拉通 | 217 | 1.49 | 5.34 | 12.2 | 25.0 | 284 | 21.0 | 12.0 | 17.0 | |
秦祁昆造山带 | 1 244 | 1.16 | 5.40 | 14.6 | 31.6 | 1 932 | 31.4 | 13.7 | 24.2 | |
松潘—甘孜造山带 | 482 | 1.08 | 10.82 | 23.8 | 38.1 | 1 189 | 36.7 | 20.1 | 27.6 | |
西藏—三江造山带 | 1 026 | 0.78 | 7.61 | 14.9 | 31.7 | 2 302 | 42.0 | 15.3 | 23.9 | |
扬子克拉通 | 2 040 | 0.98 | 8.89 | 16.6 | 35.7 | 1 290 | 26.3 | 16.7 | 23.9 | |
华南造山带 | 1 723 | 0.69 | 3.67 | 10.0 | 23.7 | 2 280 | 19.2 | 9.73 | 17.2 | |
超基性岩 | 48 | 116 | 537 | 1 317 | 1 976 | 2 789 | 1 264 | 970 | 1 264 | |
基性岩 | 611 | 1.39 | 35.1 | 63.4 | 121 | 792 | 88.8 | 60.1 | 62.8 | |
中性岩 | 1 189 | 1.55 | 8.06 | 17.5 | 36.9 | 257 | 29.2 | 17.5 | 25.5 | |
酸性岩 | 2 802 | 0.34 | 2.24 | 3.19 | 5.48 | 108 | 5.55 | 3.81 | 4.78 | |
泥质岩 | 1 347 | 0.98 | 29.3 | 39.4 | 48.7 | 456 | 42.3 | 37.1 | 40.3 | |
碎屑岩 | 3 744 | 1.16 | 9.28 | 17.9 | 28.2 | 710 | 21.7 | 15.8 | 20.2 | |
碳酸盐岩 | 1 861 | 0.77 | 7.42 | 9.03 | 11.0 | 197 | 10.3 | 9.30 | 9.89 |
Table 1 Characteristics of Ni baselines in rocks of different tectonic units and major rock types
全国一级大地 构造单元和主 要岩石类型 | 原始数据 | 剔除离散值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
样品数/ 个 | 最小值/ 10-6 | 25%下四分 位值/10-6 | 50%中位数 基准值/10-6 | 75%上四分 位值/10-6 | 最大值/ 10-6 | 算术平均 值/10-6 | 几何平均 值/10-6 | 背景值/ 10-6 | ||
全国 | 11 602 | 0.34 | 5.54 | 12.1 | 29.0 | 2 789 | 27.8 | 12.5 | 22.2 | |
造山带 | 7 224 | 0.34 | 4.52 | 11.5 | 28.0 | 2 349 | 28.8 | 11.7 | 21.9 | |
克拉通 | 4 378 | 0.37 | 6.98 | 12.9 | 30.7 | 2 789 | 26.1 | 13.9 | 22.4 | |
天山—兴蒙造山带 | 2 749 | 0.34 | 3.52 | 8.94 | 24.4 | 2 349 | 27.3 | 10.1 | 21.5 | |
华北克拉通 | 2 121 | 0.37 | 5.47 | 10.4 | 26.2 | 2 789 | 26.4 | 11.9 | 21.6 | |
塔里木克拉通 | 217 | 1.49 | 5.34 | 12.2 | 25.0 | 284 | 21.0 | 12.0 | 17.0 | |
秦祁昆造山带 | 1 244 | 1.16 | 5.40 | 14.6 | 31.6 | 1 932 | 31.4 | 13.7 | 24.2 | |
松潘—甘孜造山带 | 482 | 1.08 | 10.82 | 23.8 | 38.1 | 1 189 | 36.7 | 20.1 | 27.6 | |
西藏—三江造山带 | 1 026 | 0.78 | 7.61 | 14.9 | 31.7 | 2 302 | 42.0 | 15.3 | 23.9 | |
扬子克拉通 | 2 040 | 0.98 | 8.89 | 16.6 | 35.7 | 1 290 | 26.3 | 16.7 | 23.9 | |
华南造山带 | 1 723 | 0.69 | 3.67 | 10.0 | 23.7 | 2 280 | 19.2 | 9.73 | 17.2 | |
超基性岩 | 48 | 116 | 537 | 1 317 | 1 976 | 2 789 | 1 264 | 970 | 1 264 | |
基性岩 | 611 | 1.39 | 35.1 | 63.4 | 121 | 792 | 88.8 | 60.1 | 62.8 | |
中性岩 | 1 189 | 1.55 | 8.06 | 17.5 | 36.9 | 257 | 29.2 | 17.5 | 25.5 | |
酸性岩 | 2 802 | 0.34 | 2.24 | 3.19 | 5.48 | 108 | 5.55 | 3.81 | 4.78 | |
泥质岩 | 1 347 | 0.98 | 29.3 | 39.4 | 48.7 | 456 | 42.3 | 37.1 | 40.3 | |
碎屑岩 | 3 744 | 1.16 | 9.28 | 17.9 | 28.2 | 710 | 21.7 | 15.8 | 20.2 | |
碳酸盐岩 | 1 861 | 0.77 | 7.42 | 9.03 | 11.0 | 197 | 10.3 | 9.30 | 9.89 |
全国一级大地 构造单元 | 层位 | 原始数据 | 剔除离散值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样品数/ 个 | 最小值/ 10-6 | 25%下四分 位值/10-6 | 50%中位数 基准值/10-6 | 75%上四分 位值/10-6 | 最大值/ 10-6 | 算术平均 值/10-6 | 几何平均 值/10-6 | 背景值/ 10-6 | |||
全国 | 表层 | 3 382 | 1.00 | 16.3 | 23.6 | 31.2 | 1 404 | 26.7 | 22.0 | 23.7 | |
深层 | 3 380 | 1.32 | 14.9 | 22.4 | 30.8 | 1 439 | 25.8 | 20.7 | 22.7 | ||
造山带 | 表层 | 2 161 | 1.40 | 14.9 | 22.5 | 31.0 | 1 404 | 26.4 | 20.9 | 22.9 | |
深层 | 2 259 | 1.32 | 13.5 | 20.8 | 29.9 | 1 439 | 25.2 | 19.4 | 21.5 | ||
克拉通 | 表层 | 1 221 | 1.00 | 18.5 | 25.0 | 31.5 | 244 | 27.1 | 23.9 | 24.9 | |
深层 | 1 221 | 1.68 | 17.8 | 24.6 | 32.1 | 366 | 26.9 | 23.3 | 24.7 | ||
天山—兴蒙 造山带 | 表层 | 909 | 1.93 | 13.9 | 21.3 | 29.1 | 288 | 22.7 | 19.4 | 21.9 | |
深层 | 907 | 1.32 | 11.5 | 17.8 | 25.9 | 257 | 20.2 | 16.4 | 18.9 | ||
华北克拉通 | 表层 | 613 | 1.68 | 17.9 | 24.2 | 29.6 | 63.1 | 24.0 | 21.8 | 23.8 | |
深层 | 613 | 1.68 | 16.2 | 23.4 | 29.8 | 92.6 | 23.7 | 20.8 | 23.4 | ||
塔里木克拉通 | 表层 | 209 | 2.53 | 17.4 | 21.2 | 27.3 | 133 | 23.5 | 21.7 | 22.7 | |
深层 | 209 | 5.88 | 16.9 | 20.3 | 25.2 | 366 | 23.1 | 20.6 | 20.8 | ||
秦祁昆造山带 | 表层 | 350 | 5.98 | 18.4 | 24.9 | 31.4 | 576 | 27.7 | 24.0 | 25.2 | |
深层 | 350 | 4.42 | 17.7 | 24.2 | 31.3 | 90.8 | 25.6 | 23.0 | 24.3 | ||
松潘—甘孜 造山带 | 表层 | 202 | 6.76 | 22.6 | 28.2 | 34.3 | 244 | 30.5 | 27.7 | 27.9 | |
深层 | 202 | 7.09 | 22.7 | 28.2 | 34.2 | 134 | 30.0 | 27.6 | 27.6 | ||
西藏—三江 造山带 | 表层 | 349 | 2.16 | 15.7 | 23.9 | 38.9 | 1 404 | 37.5 | 24.4 | 25.3 | |
深层 | 349 | 2.97 | 14.1 | 22.9 | 34.8 | 1 439 | 37.9 | 22.9 | 23.5 | ||
扬子克拉通 | 表层 | 399 | 1.00 | 21.9 | 29.3 | 38.9 | 244 | 33.7 | 29.1 | 28.9 | |
深层 | 399 | 5.43 | 22.2 | 30.4 | 39.1 | 244 | 33.8 | 29.6 | 30.2 | ||
华南造山带 | 表层 | 351 | 1.40 | 10.0 | 17.0 | 26.4 | 201 | 21.3 | 16.3 | 17.8 | |
深层 | 351 | 1.33 | 10.9 | 18.2 | 28.2 | 215 | 22.6 | 17.4 | 19.8 |
Table 2 Characteristics of Ni baseline levels in catchment sediment/alluvial soil of different tectonic units
全国一级大地 构造单元 | 层位 | 原始数据 | 剔除离散值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样品数/ 个 | 最小值/ 10-6 | 25%下四分 位值/10-6 | 50%中位数 基准值/10-6 | 75%上四分 位值/10-6 | 最大值/ 10-6 | 算术平均 值/10-6 | 几何平均 值/10-6 | 背景值/ 10-6 | |||
全国 | 表层 | 3 382 | 1.00 | 16.3 | 23.6 | 31.2 | 1 404 | 26.7 | 22.0 | 23.7 | |
深层 | 3 380 | 1.32 | 14.9 | 22.4 | 30.8 | 1 439 | 25.8 | 20.7 | 22.7 | ||
造山带 | 表层 | 2 161 | 1.40 | 14.9 | 22.5 | 31.0 | 1 404 | 26.4 | 20.9 | 22.9 | |
深层 | 2 259 | 1.32 | 13.5 | 20.8 | 29.9 | 1 439 | 25.2 | 19.4 | 21.5 | ||
克拉通 | 表层 | 1 221 | 1.00 | 18.5 | 25.0 | 31.5 | 244 | 27.1 | 23.9 | 24.9 | |
深层 | 1 221 | 1.68 | 17.8 | 24.6 | 32.1 | 366 | 26.9 | 23.3 | 24.7 | ||
天山—兴蒙 造山带 | 表层 | 909 | 1.93 | 13.9 | 21.3 | 29.1 | 288 | 22.7 | 19.4 | 21.9 | |
深层 | 907 | 1.32 | 11.5 | 17.8 | 25.9 | 257 | 20.2 | 16.4 | 18.9 | ||
华北克拉通 | 表层 | 613 | 1.68 | 17.9 | 24.2 | 29.6 | 63.1 | 24.0 | 21.8 | 23.8 | |
深层 | 613 | 1.68 | 16.2 | 23.4 | 29.8 | 92.6 | 23.7 | 20.8 | 23.4 | ||
塔里木克拉通 | 表层 | 209 | 2.53 | 17.4 | 21.2 | 27.3 | 133 | 23.5 | 21.7 | 22.7 | |
深层 | 209 | 5.88 | 16.9 | 20.3 | 25.2 | 366 | 23.1 | 20.6 | 20.8 | ||
秦祁昆造山带 | 表层 | 350 | 5.98 | 18.4 | 24.9 | 31.4 | 576 | 27.7 | 24.0 | 25.2 | |
深层 | 350 | 4.42 | 17.7 | 24.2 | 31.3 | 90.8 | 25.6 | 23.0 | 24.3 | ||
松潘—甘孜 造山带 | 表层 | 202 | 6.76 | 22.6 | 28.2 | 34.3 | 244 | 30.5 | 27.7 | 27.9 | |
深层 | 202 | 7.09 | 22.7 | 28.2 | 34.2 | 134 | 30.0 | 27.6 | 27.6 | ||
西藏—三江 造山带 | 表层 | 349 | 2.16 | 15.7 | 23.9 | 38.9 | 1 404 | 37.5 | 24.4 | 25.3 | |
深层 | 349 | 2.97 | 14.1 | 22.9 | 34.8 | 1 439 | 37.9 | 22.9 | 23.5 | ||
扬子克拉通 | 表层 | 399 | 1.00 | 21.9 | 29.3 | 38.9 | 244 | 33.7 | 29.1 | 28.9 | |
深层 | 399 | 5.43 | 22.2 | 30.4 | 39.1 | 244 | 33.8 | 29.6 | 30.2 | ||
华南造山带 | 表层 | 351 | 1.40 | 10.0 | 17.0 | 26.4 | 201 | 21.3 | 16.3 | 17.8 | |
深层 | 351 | 1.33 | 10.9 | 18.2 | 28.2 | 215 | 22.6 | 17.4 | 19.8 |
国家地区 | 采样层位及镍基准值/10-6 | |||
---|---|---|---|---|
中国 | 表层(汇水域沉积物/土壤) | 深层(汇水域沉积物/土壤) | ||
23.6 | 22.4 | |||
欧洲 | 表层土壤 | 深层土壤 | 水系沉积物 | 河漫滩沉积物 |
21.8 | 18.0 | 21.0 | 22.0 | |
北美(大陆剖面) | A层 | C层 | ||
13.8 | 18.2 | |||
澳大利亚 | 表层沉积物 | 深层沉积物 | ||
9.8 | 11.6 |
Table 3 Comparison of Ni baselines between China and other continents (countries)
国家地区 | 采样层位及镍基准值/10-6 | |||
---|---|---|---|---|
中国 | 表层(汇水域沉积物/土壤) | 深层(汇水域沉积物/土壤) | ||
23.6 | 22.4 | |||
欧洲 | 表层土壤 | 深层土壤 | 水系沉积物 | 河漫滩沉积物 |
21.8 | 18.0 | 21.0 | 22.0 | |
北美(大陆剖面) | A层 | C层 | ||
13.8 | 18.2 | |||
澳大利亚 | 表层沉积物 | 深层沉积物 | ||
9.8 | 11.6 |
Fig.8 Boxplots showing variations of Ni (×10-6) content in top (a) and deep (b) layers of catchment sediment/alluvial soil of different tectonic units in China
[1] | WBMS. World metal statistics 2019[R]. London: World Bureau of Metal Statistics, 2019. |
[2] | 王岩, 王登红, 孙涛, 等. 中国镍矿成矿规律的量化研究与找矿方向探讨[J]. 地质学报, 2020, 94(1): 217-240. |
[3] |
娄德波, 孙艳, 山成栋, 等. 中国镍矿床地质特征与矿产预测[J]. 地学前缘, 2018, 25(3): 67-81.
DOI |
[4] | 孔令湖, 邓文兵, 尚磊. 中国镍矿资源现状与国家级镍矿床实物地质资料筛选[J]. 有色金属(矿山部分), 2021, 73(2): 79-86. |
[5] | 卢羽桐, 罗国平, 施毅敏. 新能源找矿[J]. 财新周刊, 2023(6): 50-63. |
[6] | WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39. |
[7] | WANG X Q, LIU X M, HAN Z X, et al. Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J]. Journal of Geochemical Exploration, 2015, 154: 32-48. |
[8] | WANG X Q, HAN Z X, WANG W, et al. Continental-scale geochemical survey of lead (Pb) in China’s mainland’s pedosphere: concentration, spatial distribution and influences[J]. Applied Geochemistry, 2019, 100: 55-63. |
[9] | WANG W, WANG X Q, CHI Q H, et al. Geochemical characteristics of fluorine (F) in China’s mainland’s pedosphere: on the basis of the China geochemical baselines project[J]. Journal of Geochemical Exploration, 2020, 219: 106635. |
[10] | LIU H L, WANG X Q, ZHANG B M, et al. Concentration and distribution of lithium in catchment sediments of China: conclusions from the China geochemical baselinesproject[J]. Journal of Geochemical Exploration, 2020, 215: 106540. |
[11] | 王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18. |
[12] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984. |
[13] | CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37. |
[14] | RUDNICK R L, FOUNTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3): 267-310. |
[15] | ANDERSON D L. Chemical composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(Suppl 1): 41-52. |
[16] | JAVOY M, KAMINSKI E, GUYOT F, et al. The chemical composition of the earth: enstatite chondrite models[J]. Earth and Planetary Science Letters, 2010, 293(3/4): 259-268. |
[17] | YAN M C, CHI Q H. The chemical composition of the continental crust and rocks in the eastern part of China[M]. Beijing: Science Press, 2005. |
[18] | 高山, 骆庭川, 张本仁, 等. 中国东部地壳的结构和组成[J]. 中国科学D辑: 地球科学, 1999, 29(3): 204-213. |
[19] | TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. London: Blackwell, 1985. |
[20] | RUDNICK R L, GAO S. Composition of thecontinental crust[M]// HOLLAND H D, CONDIE K. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[21] | VINOGRADOV A P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the earth[J]. Geochemistry, 1962, 7: 555-571 (in Russian). |
[22] | TUREKIAN KK, WEDEPOHL K H. Distribution of the elements in some major units of the Earth’s crust[J]. Geological Society of America Bulletin, 1961, 72(2): 175. |
[23] | TAYLOR S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285. |
[24] | 郭远生, 罗玉福. 中国和东南亚红土型镍矿地质与勘查[M]. 北京: 地质出版社, 2013. |
[25] | 三金柱, 魏俊瑛. 浅谈岩浆型铜镍硫化物矿床找矿标志[J]. 新疆有色金属, 2009, 32(5): 10-11. |
[26] | DARNLEY A G. International geochemical mapping: a review[J]. Journal of Geochemical Exploration, 1995, 55(1/2/3): 5-10. |
[27] | 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480. |
[28] | 张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42. |
[29] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007. |
[30] | REIMANN C, FILZMOSER P, GARRETT R G, et al. Statistical data analysis explained: applied environmental statistics with R[M]. Chichester: John Wiley and Sons Ltd., 2008. |
[31] | REIMANN C, ARNOLDUSSEN A, ENGLMAIER P, et al. Element concentrations and variations along a 120-km transect in southern Norway-Anthropogenic vs. geogenic vs. biogenic element sources and cycles[J]. Applied Geochemistry, 2007, 22(4): 851-871. |
[32] | XIE X J, CHENG H X. The suitability of floodplain sediment as a global sampling medium: evidence from China[J]. Journal of Geochemical Exploration, 1997, 58(1): 51-62. |
[33] | 谢学锦, 任天祥, 孙焕振. 中国地球化学图集[M]. 北京: 地质出版社, 2012. |
[34] | SALMINEN R, BATISTA M J, BIDOVEC M, et al. Geochemical Atlas of Europe. part 1: background information, methodology and maps[R]. Espoo: Geological Survey of Finland, 2005. |
[35] | SMITH D B, CANNON W F, WOODRUFF L G, et al. Major- and traceelement concentrations in soils from two continental-scale transects of the United States and Canada[R]. Reston: U. S. Geological Survey Open-File Report, 2005. |
[36] | REIMANN C, DE CARITAT P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J]. Science of the Total Environment, 2017, 578: 633-648. |
[37] | 任纪舜. 新一代中国大地构造图: 中国及邻区大地构造图(1∶5000000)附简要说明: 从全球看中国大地构造[J]. 地球学报, 2003, 24(1): 1-2. |
[38] | 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-16, 255, 17-28. |
[39] | 张旗, 周国庆, 王焰. 中国蛇绿岩的分布、时代及其形成环境[J]. 岩石学报, 2003, 19(1): 1-8. |
[40] | 翁凯, 徐学义, 马中平, 等. 新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2016, 32(5): 1420-1436. |
[41] | LIAO W, HAN B F, XU Y, et al. Ediacaran-Cambrian intra-oceanic arc volcanic rocks in southern west Junggar, NW China: new constraints on the initial subduction of the Junggar-Balkhash Ocean and migration of arc magmatism[J]. Geological Journal, 2021, 56(11): 5804-5820. |
[42] | 刘函. 北阿尔金洋新元古代-早古生代裂拼演化过程: 红柳沟-拉配泉蛇绿混杂岩带剖析[D]. 武汉: 中国地质大学(武汉), 2011. |
[43] | ZHU J, ZHANG Z C, SANTOSH M, et al. Carlin-style gold province linked to the extinct Emeishan plume[J]. Earth and Planetary Science Letters, 2020, 530: 115940. |
[44] | 陈赟, 赵与同, 刘佳乐, 等. 峨眉山大火成岩省的岩石圈结构: 对地幔柱-岩石圈相互作用的启示[J]. 岩石学报, 2023, 39(9): 2541-2553. |
[45] | CHOI H O, CHOI S H, SCHIANO P, et al. Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: implications for recycling of oceanic crustal materials into the mantle source[J]. Lithos, 2017, 284: 194-206. |
[46] | 王妍. 中国东部苏北—合肥新生代大陆玄武岩地球化学研究[D]. 合肥: 中国科学技术大学, 2011. |
[47] | 王智琳, 许德如, 吴传军, 等. 海南岛晚古生代洋岛玄武岩(OIB型)的发现及地球动力学暗示[J]. 岩石学报, 2013, 29(3): 875-886. |
[48] | 魏静娴. Ⅰ、硅酸盐高精度B同位素测定方法的建立及其应用 Ⅱ、南海海山玄武岩的年代学和地球化学研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015. |
[49] | 韩善楚. 华南早寒武世黑色岩系生物—热水—海水三元叠合成矿作用及其差异性研究: 以镍钼和重晶石矿床为例[D]. 南京: 南京大学, 2013. |
[50] | 李鸿福. 湖南张家界地区下寒武统黑色岩系镍钼多金属矿床成因研究[D]. 抚州: 东华理工大学, 2018. |
[51] | HENDERSON P. General geochemical properties and abundances of the rare earth elements[M]// HENDERSION P. Developments in geochemistry. Amsterdam: Elsevier, 1984: 1-32. |
[52] | BARNES S J, MAIER W D. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids[J]. Short Course Notes-Geological Association of Canada, 1999, 13: 69-106. |
[53] | 陈霞玉, 陈立辉, 陈晹, 等. 中国中-东部地区新生代玄武岩的分布规律与面积汇总[J]. 高校地质学报, 2014, 20(4): 507-519. |
[54] | SHELLNUTT J G. The Emeishan large igneous province: a synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394. |
[55] | LIU H, KONHAUSER K O, ROBBINS L J, et al. Global continental volcanism controlled the evolution of the oceanic nickel reservoir[J]. Earth and Planetary Science Letters, 2021, 572: 117116. |
[56] | ANBAR A D. Oceans: elements and evolution[J]. Science, 2008, 322(5907): 1481-1483. |
[57] | 苏本勋, 秦克章, 蒋少涌, 等. 我国钴镍矿床的成矿规律、 科学问题、 勘查技术瓶颈与研究展望[J]. 岩石学报, 2023, 39(4): 968-980. |
[58] | IONOV D A, HOEFS J, WEDEPOHL K H, et al. Content and isotopic composition of sulphur in ultramafic xenoliths from central Asia[J]. Earth and Planetary Science Letters, 1992, 111(2/3/4): 269-286. |
[59] | 李向民, 马中平, 孙吉明, 等. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J]. 岩石学报, 2009, 25(4): 862-872. |
[60] | WANG J, SU B X, ROBINSON P T, et al. Trace elements in olivine: proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks[J]. Lithos, 2021 (388/389): 106085. |
[61] | 王庭院, 张善明, 张治国, 等. 内蒙古白云山镍多金属矿地质特征及找矿方向[J]. 矿产勘查, 2014, 5(6): 880-886. |
[62] | 苏本勋, 崔梦萌, 袁庆晗, 等. 高温岩浆过程中的钴镍解耦机制及其成矿指示[J]. 岩石学报, 2023, 39(10): 2867-2878. |
[63] | 包亚文, 张铭杰, 徐文博, 等. 中国大陆岩石圈地幔镍-钴-铂族元素组成及其成矿意义: 地幔捕虏体证据[J]. 岩石学报, 2022, 38(12): 3835-3852. |
[64] | ARNDT N T, LESHER C M, CZAMANSKE G K. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton: Society of Economic Geologists, 2005: 5-24. |
[65] | 耿全如, 潘桂棠, 王立全, 等. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 2011, 30(8): 1261-1274. |
[66] | 李华, 蒋少涌, 李世金, 等. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 2023, 39(4): 1041-1060. |
[67] | LI C S, RIPLEY E M. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis, and exploration implications[J]. Reviews in Economic Geology, 2011, 17: 163-180. |
[68] | QIN K Z, SU B X, SAKYI P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a Ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311(3): 237-260. |
[69] | 王坤阳, 徐金沙. 四川丹巴杨柳坪铜镍硫化物矿床铂族元素赋存状态研究[J]. 矿物学报, 2023, 43(1): 18-24. |
[70] |
王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.
DOI |
[71] | ZHANG B M, WANG X Q, CHI Q H, et al. Three-dimensional geochemical patterns of regolith over a concealed gold deposit revealed by overburden drilling in desert terrains of northwestern China[J]. Journal of Geochemical Exploration, 2016, 164: 122-135. |
[72] | ZHANG B M, WANG X Q, ZHOU J, et al. Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian Basin, North-east China[J]. Journal of Geochemical Exploration, 2020, 216: 106573. |
[73] | GONG Q J, DENG J, JIA Y J, et al. Empirical equations to describe trace element behaviors due to rock weathering in China[J]. Journal of Geochemical Exploration, 2015, 152: 110-117. |
[74] | 高雅, 邓江洪, 杨晓勇, 等. 热带地区红土型镍矿风化壳元素迁移富集规律研究: 以菲律宾南部苏里高Pili镍矿为例[J]. 地质论评, 2022, 68(5): 1839-1852. |
[75] | 付伟, 周永章, 陈远荣, 等. 东南亚红土镍矿床地质地球化学特征及成因探讨: 以印尼苏拉威西岛Kolonodale矿床为例[J]. 地学前缘, 2010, 17(2): 127-139. |
[76] | 杨宋玲, 李方林, 黄建军, 等. 碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响: 以浙江下铜山铅锌异常评价为例[J]. 物探与化探, 2015, 39(6): 1124-1131. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | HU Qinghai, WANG Xueqiu, ZHANG Bimin, CHI Qinghua, WANG Qiang, SUN Binbin, ZHOU Jian, WANG Wei, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, PAN Wei, LIU Hanliang, TIAN Mi, WU Hui. Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru [J]. Earth Science Frontiers, 2025, 32(1): 205-218. |
[3] | ZHAO Shengxian, LI Bo, CHEN Xin, LIU Wenping, ZHANG Chenglin, JI Chunhai, LIU Yongyang, LIU Dongchen, CAO lieyan, CHEN Yulong, LI Jiajun, LEI Yue, TAN Jingqiang. Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan [J]. Earth Science Frontiers, 2024, 31(5): 75-88. |
[4] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[5] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[6] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[7] | ZHI Qian, REN Rui, DUAN Fenghao, HUANG Jiaxuan, ZHU Zhao, ZHANG Xinyuan, LI Yongjun. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean [J]. Earth Science Frontiers, 2024, 31(3): 40-58. |
[8] | CHUAN Maoshan, HU Le, LIN Ruxi, MAO Chongzhen, LI Shizhong, LI Suoming, YUAN Yongsheng. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U-Pb age, trace element and Hf isotope constraints [J]. Earth Science Frontiers, 2024, 31(2): 204-223. |
[9] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[10] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[11] | BI Xianmei, MO Xuanxue, LIU Yanbin. Very low-grade metamorphic rocks in southern Tibet and their significance on geological processes and resources [J]. Earth Science Frontiers, 2024, 31(1): 201-210. |
[12] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[13] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[14] | SUN Ke, LIU Huiqing, WANG Jing, LIU Renjie, FENG Yabin, KANG Zhijiang, ZHANG Yun. Stress sensitivity characteristics of deep carbonate fractured porous media [J]. Earth Science Frontiers, 2023, 30(6): 351-364. |
[15] | FAN Tailiang, GAO Zhiqian, WU Jun. Formation and modification of deep-burial carbonate rocks and orderly distribution of multi-type reservoirs in the Tarim Basin [J]. Earth Science Frontiers, 2023, 30(4): 1-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||