Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 103-110.DOI: 10.13745/j.esf.sf.2023.9.12
Previous Articles Next Articles
LI Shanshan1(), ZHANG Rong1, FEI Yang1, LIANG Jiahui1, YANG Bing1, WANG Meng2, SHI Huading1, CHEN Shibao2,*(
)
Received:
2023-09-12
Revised:
2023-09-29
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review[J]. Earth Science Frontiers, 2024, 31(2): 103-110.
[1] | ZHAO M F, ZENG S P, LIU S G, et al. Metal accumulation by plants growing in China: capacity, synergy, and moderator effects[J]. Ecological Engineering, 2020, 148: 105790. |
[2] | CHEN R S, DE SHERBININ A, YE C, et al. China’s soil pollution: farms on the frontline[J]. Science, 2014, 344(6185): 691. |
[3] | 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2005: 522. |
[4] | WUANA R A, OKIEIMEN F E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 2011: 1-20. |
[5] | 郑振华, 周培疆, 吴振斌. 复合污染研究的新进展[J]. 应用生态学报, 2001, 12(3): 469-473. |
[6] | DØSSING L, DIDERIKSEN K, STIPP S, et al. Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments[J]. Chemical Geology, 2011, 285(1/2/3/4): 157-166. |
[7] | 胡建邦, 袁亚莉, 唐琼, 等. 氨基化改性Fe3O4/SiO2复合磁性材料的制备以及对铀(Ⅵ)的吸附研究[J]. 应用化工, 2012, 41(12): 2067-2070, 2074. |
[8] | WU T L, CUI X D, CUI P X, et al. Speciation and location of arsenic and antimony in rice samples around antimony mining area[J]. Environmental Pollution, 2019, 252: 1439-1447. |
[9] | 孙圆鹏, 易平, 张立志, 等. 超顺磁性纳米Fe3O4@SiO2功能化材料对镉污染土壤的修复[J]. 环境科学学报, 2022, 42(6): 386-397. |
[10] | 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001. |
[11] | CORNELL R M, SCHWERTMANN U. The iron oxydes:structure, properties, reactions, occurences and uses[M]. Weinheim: Wiley-VCH, 2003. |
[12] | 刘娟, 王津, 陈永亨, 等. 铊在矿物胶体和天然有机质界面上迁移转化行为的研究进展[J]. 地球与环境, 2013, 41(3): 326-333. |
[13] | 王龙, 马杰, 邓迎璇, 等. 金属离子在铁(氢)氧化物与腐殖质微界面上的吸附机理和模型研究进展[J]. 农业资源与环境学报, 2017, 34(5): 405-413. |
[14] | WEAVER R M, HOCHELLA M F, ILTON E S. Dynamic processes occurring at the $ \mathrm{Cr}_{\mathrm{aq}}^{\mathrm{III}}$-manganite (γ-MnOOH) interface: simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution[J]. Geochimica et Cosmochimica Acta, 2002, 66(23): 4119-4132. |
[15] | JORDAN N, RITTER A, SCHEINOST A C, et al. Selenium(IV) uptake by maghemite (γ-Fe2O3)[J]. Environmental Science and Technology, 2014, 48(3): 1665-1674. |
[16] | SUZUKI T, OKITA M, KAKOYAMA S, et al. Preferential adsorption and surface precipitation of lead(II) ions onto anatase in artificially contaminated Dixie clay[J]. Journal of Hazardous Materials, 2017, 338: 482-490. |
[17] | LEUZ A K, MÖNCH H, JOHNSON C A. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization[J]. Environmental Science and Technology, 2006, 40(23): 7277-7282. |
[18] | VODYANITSKII Y N. The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications[J]. Eurasian Soil Science, 2010, 43(5): 519-532. |
[19] | HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica et Cosmochimica Acta, 2003, 67(16): 2977-2992. |
[20] | BELZILE N, CHEN Y W, WANG Z J. Oxidation ofantimony (III) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174(4): 379-387. |
[21] | SHENG L, FEIN J B. Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics[J]. Environmental Science and Technology, 2014, 48(7): 3768-3775. |
[22] | ZHENG R L, SUN G X, ZHU Y G. Effects of microbial processes on the fate of arsenic in paddy soil[J]. Chinese Science Bulletin, 2013, 58(2): 186-193. |
[23] | 夏星, 杨建军. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展[J]. 应用生态学报, 2019, 30(1): 348-358. |
[24] | MUEHE E M, ADAKTYLOU I J, OBST M, et al. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil[J]. Environmental Science and Technology, 2013, 47(23): 13430-13439. |
[25] | 李芳柏, 王旭刚, 周顺桂, 等. 红壤胶体铁氧化物界面有机氯的非生物转化研究进展[J]. 生态环境, 2006, 15(6): 1343-1351. |
[26] | YU H Y, LI F B, LIU C S, et al. Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China[J]. Advances in Agronomy, 2016, 137: 279-317. |
[27] | RUBY C, ABDELMOULA M, NAILLE S, et al. Oxidation modes and thermodynamics of FeII-III oxyhydroxycarbonate green rust: dissolution-precipitation versus in situ deprotonation[J]. Geochimica et Cosmochimica Acta, 2010, 74: 953-966. |
[28] | LIU H, WEI Y, SUN Y, The formation of hematite from ferrihydrite using Fe(II) as a catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2005, 226(1): 135-140. |
[29] | YUWONO V M, BURROWS N D, SOLTIS J A, et al. Oriented aggregation: formation and transformation of mesocrystal intermediates revealed[J]. Journal of the American Chemical Society, 2010, 132(7): 2163-2165. |
[30] | MIN H, LI F B. Soil microbe mediated iron cycling and its environmental implication[J]. Acta Pedologica Sinica, 2018, 51: 683-698. |
[31] | SU C, ZHANG M L, LIN L Y, et al. Reduction of iron oxides and microbial community composition in iron-rich soils with different organic carbon as electron donors[J]. International Biodeterioration and Biodegradation, 2020, 148: 104881-104887. |
[32] | LACK J G, CHAUDHURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II)[J]. Applied and Environmental Microbiology, 2002, 68(6): 2704-2710. |
[33] | WIDDEL F, SCHNELL S, HEISING S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(6423): 834-836. |
[34] | WEBER K A, URRUTIA M M, CHURCHILL P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental Microbiology, 2006, 8(1): 100-113. |
[35] | FENG X H, WANG X M, ZHU M, et al. Effects of phosphate and silicate on the transformation of hydroxycarbonate green rust to ferric oxyhydroxides[J]. Geochimica et Cosmochimica Acta, 2015, 171: 1-14. |
[36] | LIU J, ZHUR L, XU T Y, et al. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite[J]. Chemosphere, 2016, 144: 1148-1155. |
[37] | LIU J, ZHU R L, LIANG X L, et al, Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study[J]. Chemical Geology, 2018, 477: 12-21. |
[38] | 梁化学, 王益权, 石宗琳, 等. 不同形态氧化铁对黄土性土壤吸附铅的影响[J]. 干旱地区农业研究, 2017, 35(1): 64-70. |
[39] | 刘承帅, 韦志琦, 李芳柏, 等. 游离态Fe(Ⅱ)驱动赤铁矿晶相重组的Fe原子交换机制: 稳定Fe同位素示踪研究[J]. 中国科学: 地球科学, 2016, 46(11): 1542-1553. |
[40] | KHAN N, SESHADRI B, BOLAN N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants[J]. Advances in Agronomy, 2016, 138: 1-96. |
[41] | SEBASTIAN A, PRASAD M N V. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron[J]. Plant Biology (Stuttgart, Germany), 2016, 18(6): 1008-1015. |
[42] | LIU W J, ZHU Y G, HU Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environmental Science and Technology, 2006, 40(18): 5730-5736. |
[43] | ZHANG Q, CHEN H F, XU C, et al. Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes[J]. Environmental and Experimental Botany, 2019, 162: 392-398. |
[44] | 李芳柏, 李勇珠. 稻田体系中铁的生物地球化学过程及铁同位素分馏机制研究进展[J]. 生态环境学报, 2019, 28(6): 1251-1260. |
[45] | 郭明欣, 郑玲, 赵旭升. 水稻铁吸收、转运及调控的分子机制研究进展[J]. 遗传, 2017, 39(5): 388-395. |
[46] | MARKOVIĆ T, MANZOOR S, HUMPHREYS-WILLIAMS E, et al. Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2’-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms[J]. Environmental Science and Technology, 2017, 51(1): 98-107. |
[47] | PUSCHENREITER M, GRUBER B, WENZEL W W, et al. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils[J]. Environmental and Experimental Botany, 2017, 138: 67-76. |
[48] | KAVITHA P G, KURUVILLA S, MATHEW M K. Functional characterization of a transition metal ion transporter, OsZIP 6 from rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2015, 97: 165-174. |
[49] | CHANG J D, GAO W P, WANG P, et al. OsNRAMP 5 is a major transporter for lead uptake in rice[J]. Environmental Science and Technology, 2022, 56(23): 17481-17490. |
[50] | ISHIMARU Y, KIM S, TSUKAMOTO T, et al. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(18): 7373-7378. |
[51] | 郭华, 陈振焱, 胡超, 等. 铁基生物炭对镉污染农田土壤的修复作用研究[J]. 环境科学与技术, 2020, 43(5): 195-202. |
[52] | 吴宝麟, 杨志辉, 柴立元, 等. 磷基及铁基钝化剂对Pb、Cd、As复合污染土壤的修复效果及其工艺条件优化[J]. 安全与环境学报, 2015, 15(5): 314-319. |
[53] | 傅毛生, 许龙飞, 钟学明, 等. Fe3O4/壳聚糖复合纳米粒子吸附剂的制备及其对Pb2+吸附性能[J]. 化学研究与应用, 2013, 25(4): 554-557. |
[54] | DOYLE C S, KENDELEWICZ T, BOSTICK B C, et al. Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(VI)-containing aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4287-4299. |
[55] | SINGH R, MISRA V, SINGH R P. Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil[J]. Journal of Nanoparticle Research, 2011, 13(9): 4063-4073. |
[56] | 林国林, 杜胜南, 金兰淑, 等. 施用生物炭和零价铁粉对土壤中镉形态变化的影响[J]. 水土保持学报, 2013, 27(4): 157-160, 165. |
[57] | 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6): 58-66. |
[58] | ZHU K C, DUAN Y Y, WANG F, et al. Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption[J]. Chemical Engineering Journal, 2017, 311: 236-246. |
[59] | FRIESL W, LOMBI E, HORAK O, et al. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 191-196. |
[60] | ILLERA V, GARRIDO F, SERRANO S, et al. Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products[J]. European Journal of Soil Science, 2004, 55(1): 135-145. |
[61] | 李来顺, 陈窈君, 吕正勇. 硫铁矿对Cr(Ⅵ)污染土壤的长效还原稳定化研究[J]. 环境工程, 2020, 38(6): 52-57. |
[1] | LI Pei, ZHANG Chunxia, LUO Hao, LIU Zhicheng, GAO Zhanwu. The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(4): 326-339. |
[2] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[3] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[6] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[7] | DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China [J]. Earth Science Frontiers, 2024, 31(2): 130-136. |
[8] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[9] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[10] | LI Xi, ZHU Guangyou, LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences—a review [J]. Earth Science Frontiers, 2024, 31(2): 447-471. |
[11] | HAO Mengqiuyue, LIU Daqing, YAN Zhenfei, FENG Chenglian. Short chain chlorinated paraffins in soil: Environmental safety criteria based on ecological risks [J]. Earth Science Frontiers, 2024, 31(2): 54-63. |
[12] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
[13] | WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae [J]. Earth Science Frontiers, 2024, 31(1): 111-126. |
[14] | DONG Hailiang, ZENG Qiang, LIU Deng, SHENG Yizhi, LIU Xiaolei, LIU Yuan, HU Jinglong, LI Yang, XIA Qingyin, LI Runjie, HU Dafu, ZHANG Donglei, ZHANG Wenhui, GUO Dongyi, ZHANG Xiaowen. Interactions between clay minerals and microbes: Mechanisms and applications in environmental remediation [J]. Earth Science Frontiers, 2024, 31(1): 467-485. |
[15] | ZHANG Chenggang, WEI Jing, ZHANG Yutao, WANG Ran, HOU Zhaoshuo, ZHAO Jingxuan, ZHANG Xinran. Soil Sr, Mg, Ca in upstream watersheds of the Guanting and Miyun Reservoirs as climate indicators [J]. Earth Science Frontiers, 2023, 30(6): 485-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||