Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 130-136.DOI: 10.13745/j.esf.sf.2023.9.13
Previous Articles Next Articles
DING Changfeng1,2(), ZHOU Zhigao1, WANG Yurong1, ZHANG Taolin1, WANG Xingxiang1,2,3
Received:
2023-08-20
Revised:
2023-09-10
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China[J]. Earth Science Frontiers, 2024, 31(2): 130-136.
物种/生态过程 | 测试终点 | 数量 | EC10/(mg·kg-1) | pH值 | 有机质含量/(g·kg-1) | 文献 | |
---|---|---|---|---|---|---|---|
陆生植物 | 水稻 | 根伸长 | 8 | 1.83~4.62 | 4.93~8.83 | 10.7~73.8 | 宋文恩等[ |
白菜 | 根伸长 | 18 | 31.4~672 | 4.62~8.69 | 5.57~81.1 | 郑丽萍等[ | |
玉米 | 生物量 | 1 | 10.3 | 7.28 | 11.3 | 贺萌萌等[ | |
大麦 | 根伸长 | 6 | 79~437 | 4.34~7.78 | 16.3~51.1 | 张强[ | |
黑麦草 | 根伸长 | 14 | 4.40~200 | 4.77~8.24 | 6.00~81.0 | 王子萱等[ | |
日本女贞 | 生物量 | 13 | 0.66~11.0 | 4.66~7.88 | 11.5~126 | Zhang等[ | |
土壤无脊椎动物 | 蚯蚓 | 繁殖 | 18 | 11.3~40.1 | 4.62~8.69 | 5.57~81.1 | 刘海龙[ |
跳虫 | 生长 | 18 | 5.73~27.9 | 4.62~8.69 | 5.57~81.1 | 宣亮[ | |
线虫 | 繁殖 | 3 | 2.52~14.2 | 5.23~7.42 | 8.63~33.6 | 王鑫等[ | |
土壤生态过程 | 微生物量 | 2 | 1.13~1.97 | 4.89~7.71 | 5.77~20.0 | 程金金等[ | |
脲酶 | 2 | 0.93~13.1 | 4.89~7.71 | 5.77~20.0 | 程金金等[ | ||
脱氢酶 | 18 | 0.80~58.1 | 4.90~8.80 | 8.46~47.1 | Tan等[ | ||
硝化作用 | 5 | 36.6~312 | 7.26~7.68 | 7.64~15.8 | 王月等[ |
Table 1 The selected ecotoxicity data of Cd and the associated soil properties
物种/生态过程 | 测试终点 | 数量 | EC10/(mg·kg-1) | pH值 | 有机质含量/(g·kg-1) | 文献 | |
---|---|---|---|---|---|---|---|
陆生植物 | 水稻 | 根伸长 | 8 | 1.83~4.62 | 4.93~8.83 | 10.7~73.8 | 宋文恩等[ |
白菜 | 根伸长 | 18 | 31.4~672 | 4.62~8.69 | 5.57~81.1 | 郑丽萍等[ | |
玉米 | 生物量 | 1 | 10.3 | 7.28 | 11.3 | 贺萌萌等[ | |
大麦 | 根伸长 | 6 | 79~437 | 4.34~7.78 | 16.3~51.1 | 张强[ | |
黑麦草 | 根伸长 | 14 | 4.40~200 | 4.77~8.24 | 6.00~81.0 | 王子萱等[ | |
日本女贞 | 生物量 | 13 | 0.66~11.0 | 4.66~7.88 | 11.5~126 | Zhang等[ | |
土壤无脊椎动物 | 蚯蚓 | 繁殖 | 18 | 11.3~40.1 | 4.62~8.69 | 5.57~81.1 | 刘海龙[ |
跳虫 | 生长 | 18 | 5.73~27.9 | 4.62~8.69 | 5.57~81.1 | 宣亮[ | |
线虫 | 繁殖 | 3 | 2.52~14.2 | 5.23~7.42 | 8.63~33.6 | 王鑫等[ | |
土壤生态过程 | 微生物量 | 2 | 1.13~1.97 | 4.89~7.71 | 5.77~20.0 | 程金金等[ | |
脲酶 | 2 | 0.93~13.1 | 4.89~7.71 | 5.77~20.0 | 程金金等[ | ||
脱氢酶 | 18 | 0.80~58.1 | 4.90~8.80 | 8.46~47.1 | Tan等[ | ||
硝化作用 | 5 | 36.6~312 | 7.26~7.68 | 7.64~15.8 | 王月等[ |
毒性终点 | 预测模型 | n | R2 | 文献 |
---|---|---|---|---|
水稻根伸长 | lg[EC50]=0.091pH+0.304lg[OC]+0.826 | 8 | 0.85 | 宋文恩等[ |
白菜根伸长 | lg[EC10]=0.148pH+1.323 | 18 | 0.38 | 郑丽萍等[ |
lg[EC50]=0.214pH+1.322 | 18 | 0.73 | ||
大麦根伸长 | lg[EC10]=0.192pH+1.018 | 6 | 0.69 | 张强[ |
日本女贞生物量 | EC10=-1.89pH-0.190AlOX+23.7 | 13 | 0.72 | Zhang等[ |
蚯蚓产茧量 | lg[EC50]=0.118pH+1.311 | 18 | 0.79 | 刘海龙[ |
跳虫繁殖率 | lg[EC10]=0.127pH+0.280 | 18 | 0.83 | 宣亮[ |
lg[EC50]=0.117pH+0.002[OM]+1.074 | 18 | 0.83 | ||
脱氢酶活性 | lg[EC50]=-0.159pH+1.105lg[OC]+2.585 | 16 | 0.87 | Tan等[ |
Table 2 Prediction models for ecological toxicity of soil Cd
毒性终点 | 预测模型 | n | R2 | 文献 |
---|---|---|---|---|
水稻根伸长 | lg[EC50]=0.091pH+0.304lg[OC]+0.826 | 8 | 0.85 | 宋文恩等[ |
白菜根伸长 | lg[EC10]=0.148pH+1.323 | 18 | 0.38 | 郑丽萍等[ |
lg[EC50]=0.214pH+1.322 | 18 | 0.73 | ||
大麦根伸长 | lg[EC10]=0.192pH+1.018 | 6 | 0.69 | 张强[ |
日本女贞生物量 | EC10=-1.89pH-0.190AlOX+23.7 | 13 | 0.72 | Zhang等[ |
蚯蚓产茧量 | lg[EC50]=0.118pH+1.311 | 18 | 0.79 | 刘海龙[ |
跳虫繁殖率 | lg[EC10]=0.127pH+0.280 | 18 | 0.83 | 宣亮[ |
lg[EC50]=0.117pH+0.002[OM]+1.074 | 18 | 0.83 | ||
脱氢酶活性 | lg[EC50]=-0.159pH+1.105lg[OC]+2.585 | 16 | 0.87 | Tan等[ |
用地方式 | 危害浓度 | 土壤基准/(mg·kg-1) | |||
---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | ||
自然保护地和农用地 | HC5 | 1.91 | 2.69 | 3.76 | 5.25 |
公园用地 | HC20 | 3.94 | 5.58 | 7.88 | 11.1 |
住宅用地 | HC40 | 7.59 | 10.8 | 15.4 | 22.0 |
商服及工业用地 | HC50 | 10.5 | 15.0 | 21.5 | 30.8 |
Table 3 Environmental criteria of total Cd in soils of different use types based on ecological safety
用地方式 | 危害浓度 | 土壤基准/(mg·kg-1) | |||
---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | ||
自然保护地和农用地 | HC5 | 1.91 | 2.69 | 3.76 | 5.25 |
公园用地 | HC20 | 3.94 | 5.58 | 7.88 | 11.1 |
住宅用地 | HC40 | 7.59 | 10.8 | 15.4 | 22.0 |
商服及工业用地 | HC50 | 10.5 | 15.0 | 21.5 | 30.8 |
用地方式 | 危害浓度 | 土壤基准/(mg·kg-1) | |||
---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | ||
自然保护地和农用地 | HC5 | 1.13 | 1.59 | 2.23 | 3.12 |
公园用地 | HC20 | 2.34 | 3.31 | 4.68 | 6.62 |
住宅用地 | HC40 | 4.51 | 6.44 | 9.18 | 13.1 |
商服及工业用地 | HC50 | 6.24 | 8.95 | 12.8 | 18.4 |
Table 4 Environmental criteria of EDTA extractable Cd in soils of different use types based on ecological safety
用地方式 | 危害浓度 | 土壤基准/(mg·kg-1) | |||
---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | ||
自然保护地和农用地 | HC5 | 1.13 | 1.59 | 2.23 | 3.12 |
公园用地 | HC20 | 2.34 | 3.31 | 4.68 | 6.62 |
住宅用地 | HC40 | 4.51 | 6.44 | 9.18 | 13.1 |
商服及工业用地 | HC50 | 6.24 | 8.95 | 12.8 | 18.4 |
国家 | 生态受体 | 用地方式 | 土壤基准/(mg·kg-1) | 推导方法 |
---|---|---|---|---|
美国[ | 植物 | 32 | 几何均值 | |
无脊椎动物 | 140 | |||
鸟类 | 0.77 | |||
哺乳动物 | 0.36 | |||
荷兰[ | 12 | SSD(HC50) | ||
英国[ | 菜园地 | 1.8 | SSD(HC5) | |
居住用地 | 10 | |||
商业用地 | 230 | |||
加拿大[ | 农业用地 | 1.4 | 排序分布法 (第25和50百分位数) | |
居住用地/公园 | 10 | |||
商业用地 | 22 | |||
工业用地 | 22 |
Table 5 Environmental criteria of total Cd in soils of different countries based on ecological safety
国家 | 生态受体 | 用地方式 | 土壤基准/(mg·kg-1) | 推导方法 |
---|---|---|---|---|
美国[ | 植物 | 32 | 几何均值 | |
无脊椎动物 | 140 | |||
鸟类 | 0.77 | |||
哺乳动物 | 0.36 | |||
荷兰[ | 12 | SSD(HC50) | ||
英国[ | 菜园地 | 1.8 | SSD(HC5) | |
居住用地 | 10 | |||
商业用地 | 230 | |||
加拿大[ | 农业用地 | 1.4 | 排序分布法 (第25和50百分位数) | |
居住用地/公园 | 10 | |||
商业用地 | 22 | |||
工业用地 | 22 |
[1] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759. |
[2] | 姜瑢, 李勖之, 王美娥, 等. 土壤污染生态毒性效应评价研究进展[J]. 生态学报, 2023, 43(21): 9061-9070. |
[3] | 赵晓丽, 赵天慧, 李会仙, 等. 中国环境基准研究重点方向探讨[J]. 生态毒理学报, 2015, 10(1): 18-30. |
[4] | POSTHUMA L, TRAAS T P, SUTER G W. General introduction to species sensitivity distributions[M]// POSTHUMAL, TRAAST P, SUTERG W. Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press, 2002: 3-9. |
[5] | VAN STRAALENN M. Theory of ecological risk assessment based on species sensitivity distributions[M]// POSTHUMAL, TRAAST P, SUTERG W. Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press, 2002: 37-48. |
[6] | SMOLDERS E, OORTS K, VAN SPRANG P, et al. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards[J]. Environmental Toxicology and Chemistry, 2009, 28(8): 1633-1642. |
[7] | QIN L Y, SUN X Y, YU L, et al. Ecological risk threshold for Pb in Chinese soils[J]. Journal of Hazardous Materials, 2023, 444: 130418. |
[8] | ZHAO S W, QIN L Y, WANG L F, et al. Ecological risk thresholds for Zn in Chinese soils[J]. Science of the Total Environment, 2022, 833: 155182. |
[9] | KWAK J I, MOON J, KIM D, et al. Species sensitivity distributions for nonylphenol to estimate soil hazardous concentration[J]. Environmental Science and Technology, 2017, 51(23): 13957-13966. |
[10] | KWAK J I, MOON J, KIM D, et al. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach[J]. Journal of Hazardous Materials, 2018, 344: 390-397. |
[11] | WHEELER J R, GRIST E P M, LEUNG K M Y, et al. Species sensitivity distributions: data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1): 192-202. |
[12] | LI L J, JIANG B, LI K, et al. Accurate derivation and modelling of criteria of soil extractable and total cadmium for safe wheat production[J]. Ecotoxicology and Environmental Safety, 2023, 261: 115092. |
[13] | 宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(ECx)及预测模型[J]. 中国农业科学, 2014, 47(17): 3434-3443. |
[14] | 郑丽萍, 杜俊洋, 张亚, 等. 18种土壤中镉对白菜种子的毒害效应及预测模型研究[C]// 2017中国环境科学学会科学与技术年会论文集, 厦门. 北京: 中国环境科学学会, 2017: 1867-1876. |
[15] | 贺萌萌, 徐猛, 杜艳丽, 等. 镉在北京褐潮土中对玉米幼苗及其根际微生物的毒性效应[J]. 生态毒理学报, 2013, 8(3): 404-412. |
[16] | 张强. 贵州省主要土壤外源Pb和Cd对大麦和蚯蚓毒性初步研究[D]. 贵阳: 贵州师范大学, 2016. |
[17] | 王子萱, 陈宏坪, 李明, 等. 不同土壤中镉对大麦和多年生黑麦草毒性阈值的研究[J]. 土壤, 2019, 51(6): 1151-1159. |
[18] | ZHANG X Q, WU H X, MA Y B, et al. Intrinsic soil property effects on Cd phytotoxicity to Ligustrum japonicum ‘Howardii’ expressed as different fractions of Cd in forest soils[J]. Ecotoxicology and Environmental Safety, 2020, 206: 110949. |
[19] | 刘海龙. 基于蚯蚓生物毒性的土壤Cd生态阈值研究[D]. 苏州: 苏州科技大学, 2015. |
[20] | 宣亮. 基于跳虫毒性实验的镉(Cd)生态阈值研究[D]. 合肥: 安徽大学, 2016. |
[21] | 王鑫, 党秀丽, 赵龙, 等. 镉对土壤秀丽隐杆线虫的毒性效应[J]. 农业环境科学学报, 2023, 42(4): 778-786. |
[22] | 程金金, 宋静, 陈文超, 等. 镉污染对红壤和潮土微生物的生态毒理效应[J]. 生态毒理学报, 2013, 8(4): 577-586. |
[23] | TAN X P, WANG Z Q, LU G N, et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials, 2017, 329: 299-309. |
[24] | 王月, 王学东, 杨昱祺, 等. 镉对北京城郊土壤潜在硝化速率的影响[J]. 生态毒理学报, 2014, 9(2): 367-374. |
[25] | 余淑娟, 高树芳, 屈应明, 等. 不同土壤条件下镉对番茄根系的毒害效应及其毒害临界值研究[J]. 农业环境科学学报, 2014, 33(4): 640-646. |
[26] | ZHANG X Q, ZHU Y J, LI Z Z, et al. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils[J]. Environmental Research, 2023, 217: 114968. |
[27] | WAN Y N, JIANG B, WEI D P, Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110418. |
[28] | GARCÍA-GÓMEZ C, ESTEBAN E, SÁNCHEZ-PARDO B, et al. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations[J]. Ecotoxicology, 2014, 23(7): 1195-1209. |
[29] | United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005. |
[30] | VERBRUGGEN E M J, POSTHUMUS R, VAN WEZEL A. Ecotoxicological serious risk concentrations for soil, sediment and (ground) water: updated proposals for first series of compounds[R]. Amsterdam: National Institute of Public Health and the Environment (RIVM), 2001. |
[31] | United Kingdom Environment Agency (EA). Soil screening values for use in UK ecological risk assessment[R]. Warrington: United Kingdom Environment Agency, 2004. |
[32] | Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of environmental and human health soil quality guidelines[R]. Winnipeg: CCME, 2006. |
[33] | CARLON C. Derivation methods of soil screening values in Europe: a review and evaluation of national procedures towards harmonization[M]. Luxembourg: Office for Official Publications of the European Communities, 2007. |
[34] | JENNINGS A A. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination[J]. Journal of Environmental Management, 2013, 118: 72-95. |
[35] | 宋静, 许根焰, 骆永明, 等. 对农用地土壤环境质量类别划分的思考:以贵州马铃薯产区Cd风险管控为例[J]. 地学前缘, 2019, 26(6): 192-198. |
[36] | KUMPIENE J, GIAGNONI L, MARSCHNER B, et al. Assessment of methods for determining bioavailability of trace elements in soils: a review[J]. Pedosphere, 2017, 27(3): 389-406. |
[37] | JIANG B, MA Y B, ZHU G Y, et al. Prediction of soil copper phytotoxicity to barley root elongation by an EDTA extraction method[J]. Journal of Hazardous Materials, 2020, 389: 121869. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[3] | ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region [J]. Earth Science Frontiers, 2024, 31(4): 354-365. |
[4] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[5] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[6] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[7] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[8] | ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China [J]. Earth Science Frontiers, 2024, 31(2): 137-146. |
[9] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[10] | LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods [J]. Earth Science Frontiers, 2024, 31(2): 183-195. |
[11] | LIU Yongbing, SU Junjie, GUO Wei, WANG Yingnan, YIN Yaqiu. Comparative study on soil remediation of slope-alluvial contaminated arable land in granite areas, northern Hebei Province [J]. Earth Science Frontiers, 2024, 31(2): 196-203. |
[12] | DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 31-41. |
[13] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[14] | HAO Mengqiuyue, LIU Daqing, YAN Zhenfei, FENG Chenglian. Short chain chlorinated paraffins in soil: Environmental safety criteria based on ecological risks [J]. Earth Science Frontiers, 2024, 31(2): 54-63. |
[15] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||