Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 137-146.DOI: 10.13745/j.esf.sf.2023.11.40
Previous Articles Next Articles
ZHANG Jingyuan1(), WANG Xuedong1,*(
), LIANG Lichuan1, DUAN Guilan2
Received:
2023-09-28
Revised:
2023-11-10
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China[J]. Earth Science Frontiers, 2024, 31(2): 137-146.
物种及反应 | 土壤 | pH | CEC/(cmol·kg-1) | OC含量/% | Clay含量/% | EC10/ (mg·kg-1) | 置信区间内的EC10/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
黑麦草 | 祁阳 | 5.31 | 7.47 | 0.9 | 46 | 84 | 40~125 |
黑麦草 | 广州 | 7.27 | 8.3 | 1.5 | 25 | 268 | 125~393 |
黑麦草 | 廊坊 | 8.84 | 6.36 | 0.6 | 10 | 38 | 18~56 |
潜在硝化反应 | 广州 | 7.27 | 8.3 | 1.5 | 25 | 29 | 21~37 |
潜在硝化反应 | 廊坊 | 8.84 | 6.36 | 0.6 | 10 | 183 | 161~205 |
Table 1 Toxicity threshold of soil exogenous Co on ryegrass root elongation and potential nitrification reaction EC10
物种及反应 | 土壤 | pH | CEC/(cmol·kg-1) | OC含量/% | Clay含量/% | EC10/ (mg·kg-1) | 置信区间内的EC10/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
黑麦草 | 祁阳 | 5.31 | 7.47 | 0.9 | 46 | 84 | 40~125 |
黑麦草 | 广州 | 7.27 | 8.3 | 1.5 | 25 | 268 | 125~393 |
黑麦草 | 廊坊 | 8.84 | 6.36 | 0.6 | 10 | 38 | 18~56 |
潜在硝化反应 | 广州 | 7.27 | 8.3 | 1.5 | 25 | 29 | 21~37 |
潜在硝化反应 | 廊坊 | 8.84 | 6.36 | 0.6 | 10 | 183 | 161~205 |
种类 | 评价终点 | 数量 | 土壤酸碱度pH (0.01 mol CaCl2) | 土壤阳离子交换量 CEC/(cmol·kg-1) | 土壤有机碳(OC) 含量/% | 土壤黏粒(Clay) 含量/% | 毒性阈值EC10/ (mg·kg-1) | 数据来源 |
---|---|---|---|---|---|---|---|---|
植物 | 大麦根伸长 | 24 | 4.3~8.9 | 1.7~28.9 | 0.6~5.3 | 1~66 | 15~3 914 | 文献[ 文献[ |
植物 | 西红柿发芽量 | 9 | 4.3~7.7 | 2.7~28.9 | 0.9~5.3 | 1.5~47.9 | 10~222 | 文献[ |
植物 | 油菜发芽量 | 8 | 4.3~7.5 | 3.5~28.9 | 0.8~5.3 | 1.5~47.9 | 15~113 | 文献[ |
植物 | 黑麦草根伸长 | 3 | 5.31~8.84 | 6.36~8.3 | 0.6~1.5 | 10~46 | 38~268 | 本研究 |
无脊椎 动物 | 安德爱胜蚓 繁殖量 | 9 | 4.4~7.5 | 1.7~28.9 | 0.8~2.1 | 1~47.9 | 58~437 | European Chemicais Agency dossiers |
无脊椎 动物 | 赤子爱胜蚓 繁殖量 | 8 | 4.3~6.8 | 1.7~28.5 | 0.9~5.3 | 1~38.6 | 54~1 121 | European Chemicais Agency dossiers |
无脊椎 动物 | 白符跳虫 繁殖量 | 11 | 4.3~6.8 | 1.7~28.9 | 0.8~5.3 | 1~47.9 | 16~753 | European Chemicais Agency dossiers |
微生物 过程 | 葡萄糖诱导 呼吸速率 | 10 | 4.3~7.5 | 1.7~28.9 | 0.9~5.3 | 1~47.9 | 7~606 | European Chemicais Agency dossiers |
微生物 过程 | 玉米渣矿 化速率 | 9 | 4~7.53 | 1.7~28.9 | 0.9~5.3 | 1~47.9 | 38~4 696 | European Chemicais Agency dossiers |
微生物 过程 | 潜在硝化 反应速率 | 11 | 4.4~8.84 | 1.7~28.9 | 0.6~2.1 | 1~47.9 | 23~725 | 本研究及European Chemicais Agency dossiers |
Table 2 Soil properties tested and collected and EC10 values of Co to various organisms
种类 | 评价终点 | 数量 | 土壤酸碱度pH (0.01 mol CaCl2) | 土壤阳离子交换量 CEC/(cmol·kg-1) | 土壤有机碳(OC) 含量/% | 土壤黏粒(Clay) 含量/% | 毒性阈值EC10/ (mg·kg-1) | 数据来源 |
---|---|---|---|---|---|---|---|---|
植物 | 大麦根伸长 | 24 | 4.3~8.9 | 1.7~28.9 | 0.6~5.3 | 1~66 | 15~3 914 | 文献[ 文献[ |
植物 | 西红柿发芽量 | 9 | 4.3~7.7 | 2.7~28.9 | 0.9~5.3 | 1.5~47.9 | 10~222 | 文献[ |
植物 | 油菜发芽量 | 8 | 4.3~7.5 | 3.5~28.9 | 0.8~5.3 | 1.5~47.9 | 15~113 | 文献[ |
植物 | 黑麦草根伸长 | 3 | 5.31~8.84 | 6.36~8.3 | 0.6~1.5 | 10~46 | 38~268 | 本研究 |
无脊椎 动物 | 安德爱胜蚓 繁殖量 | 9 | 4.4~7.5 | 1.7~28.9 | 0.8~2.1 | 1~47.9 | 58~437 | European Chemicais Agency dossiers |
无脊椎 动物 | 赤子爱胜蚓 繁殖量 | 8 | 4.3~6.8 | 1.7~28.5 | 0.9~5.3 | 1~38.6 | 54~1 121 | European Chemicais Agency dossiers |
无脊椎 动物 | 白符跳虫 繁殖量 | 11 | 4.3~6.8 | 1.7~28.9 | 0.8~5.3 | 1~47.9 | 16~753 | European Chemicais Agency dossiers |
微生物 过程 | 葡萄糖诱导 呼吸速率 | 10 | 4.3~7.5 | 1.7~28.9 | 0.9~5.3 | 1~47.9 | 7~606 | European Chemicais Agency dossiers |
微生物 过程 | 玉米渣矿 化速率 | 9 | 4~7.53 | 1.7~28.9 | 0.9~5.3 | 1~47.9 | 38~4 696 | European Chemicais Agency dossiers |
微生物 过程 | 潜在硝化 反应速率 | 11 | 4.4~8.84 | 1.7~28.9 | 0.6~2.1 | 1~47.9 | 23~725 | 本研究及European Chemicais Agency dossiers |
土壤个数 | 物种 | 回归模型 | 编号 | r2 |
---|---|---|---|---|
24 | 大麦 | lgEC10=0.321pH+0.189 | ① | 0.613 |
lg EC10=0.363pH+0.662lgw(OC)-0.21 | ② | 0.665 | ||
9 | 西红柿 | lgEC10=0.338pH-0.335 | ① | 0.613 |
8 | 油菜 | lgEC10=0.17pH+0.461 | ① | 0.441 |
lgEC10=0.242pH+0.622lgw(OC)-0.15 | ② | 0.792 | ||
9 | 赤子爱胜蚓 | lgEC10=0.206pH+0.952 | ① | 0.599 |
11 | 白符跳虫 | lgEC10=0.931lgCEC+1.549 | ① | 0.563 |
lgEC10=1.7lgCEC-0.67lgw(Clay)+1.458 | ② | 0.755 | ||
8 | 安德爱胜蚓 | lgEC10=0.804lgw(Clay)+1.58 | ① | 0.805 |
11 | 潜在硝化反应 | lgEC10=0.698lgCEC+1.232 | ① | 0.362 |
lgEC10=0.826lgCEC-1.073lgw(OC)+1.269 | ② | 0.629 | ||
10 | 葡萄糖诱导呼吸 | lgEC10=0.971lgCEC+0.98 | ① | 0.407 |
Table 3 Normalized model of biological toxicity of Co
土壤个数 | 物种 | 回归模型 | 编号 | r2 |
---|---|---|---|---|
24 | 大麦 | lgEC10=0.321pH+0.189 | ① | 0.613 |
lg EC10=0.363pH+0.662lgw(OC)-0.21 | ② | 0.665 | ||
9 | 西红柿 | lgEC10=0.338pH-0.335 | ① | 0.613 |
8 | 油菜 | lgEC10=0.17pH+0.461 | ① | 0.441 |
lgEC10=0.242pH+0.622lgw(OC)-0.15 | ② | 0.792 | ||
9 | 赤子爱胜蚓 | lgEC10=0.206pH+0.952 | ① | 0.599 |
11 | 白符跳虫 | lgEC10=0.931lgCEC+1.549 | ① | 0.563 |
lgEC10=1.7lgCEC-0.67lgw(Clay)+1.458 | ② | 0.755 | ||
8 | 安德爱胜蚓 | lgEC10=0.804lgw(Clay)+1.58 | ① | 0.805 |
11 | 潜在硝化反应 | lgEC10=0.698lgCEC+1.232 | ① | 0.362 |
lgEC10=0.826lgCEC-1.073lgw(OC)+1.269 | ② | 0.629 | ||
10 | 葡萄糖诱导呼吸 | lgEC10=0.971lgCEC+0.98 | ① | 0.407 |
物种 | 酸性土壤EC10/(mg·kg-1) | 中性土壤EC10/(mg·kg-1) | 碱性土壤EC10/(mg·kg-1) | 石灰性土壤EC10/(mg·kg-1) |
---|---|---|---|---|
大麦 | 40 | 280 | 674 | 751 |
西红柿 | 23 | 107 | 158 | 345 |
油菜 | 11 | 45 | 92 | 81 |
黑麦草 | 4 | 28 | 68 | 76 |
赤子爱胜蚓 | 96 | 248 | 314 | 505 |
安德爱胜蚓 | 953 | 663 | 663 | 423 |
白符跳虫 | 98 | 265 | 631 | 193 |
葡萄糖诱导呼吸 | 89 | 132 | 217 | 89 |
玉米渣矿化 | 1 064 | 963 | 698 | 1 064 |
潜在硝化反应 | 124 | 113 | 82 | 124 |
Table 4 EC10 values normalized for each species under four different soil conditions
物种 | 酸性土壤EC10/(mg·kg-1) | 中性土壤EC10/(mg·kg-1) | 碱性土壤EC10/(mg·kg-1) | 石灰性土壤EC10/(mg·kg-1) |
---|---|---|---|---|
大麦 | 40 | 280 | 674 | 751 |
西红柿 | 23 | 107 | 158 | 345 |
油菜 | 11 | 45 | 92 | 81 |
黑麦草 | 4 | 28 | 68 | 76 |
赤子爱胜蚓 | 96 | 248 | 314 | 505 |
安德爱胜蚓 | 953 | 663 | 663 | 423 |
白符跳虫 | 98 | 265 | 631 | 193 |
葡萄糖诱导呼吸 | 89 | 132 | 217 | 89 |
玉米渣矿化 | 1 064 | 963 | 698 | 1 064 |
潜在硝化反应 | 124 | 113 | 82 | 124 |
土壤类型 | pH | CEC/(cmol·kg-1) | OC含量/% | Clay含量/% | HC5/(mg·kg-1) | 置信区间内的HC5/(mg·kg-1) |
---|---|---|---|---|---|---|
酸性土 | 5 | 10 | 1 | 55 | 3.65 | 1~9 |
中性土 | 7 | 15 | 1.5 | 35 | 22.00 | 13~36 |
碱性土 | 7.5 | 25 | 3 | 35 | 36.04 | 12~104 |
石灰性土 | 8.5 | 10 | 1 | 20 | 19.44 | 8~46 |
Table 5 HC5 under four soil conditions
土壤类型 | pH | CEC/(cmol·kg-1) | OC含量/% | Clay含量/% | HC5/(mg·kg-1) | 置信区间内的HC5/(mg·kg-1) |
---|---|---|---|---|---|---|
酸性土 | 5 | 10 | 1 | 55 | 3.65 | 1~9 |
中性土 | 7 | 15 | 1.5 | 35 | 22.00 | 13~36 |
碱性土 | 7.5 | 25 | 3 | 35 | 36.04 | 12~104 |
石灰性土 | 8.5 | 10 | 1 | 20 | 19.44 | 8~46 |
[1] | 陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41. |
[2] | JIANG M, WANG K, WANG Y P, et al. Technologies for the cobalt-contaminated soil remediation: a review[J]. Science of the Total Environment, 2022, 813: 151908. |
[3] | 蒋喜艳, 张述习, 尹西翔, 等. 土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报, 2021, 16(6): 150-160. |
[4] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1996. |
[5] | 王云, 魏复盛. 土壤环境元素化学[M]. 北京: 中国环境科学出版社, 1995. |
[6] | 罗泽娇, 夏梦帆, 黄唯怡. 钴在土壤和植物系统中的迁移转化行为及其毒性[J]. 生态毒理学报, 2019, 14(2): 81-90. |
[7] | 祝贺, 孙志高, 衣华鹏, 等. 黄河口不同类型湿地土壤中钒和钴含量的空间分布特征[J]. 水土保持学报, 2016, 30(1): 315-320. |
[8] | 李金瓶, 王学东, 马虹, 等. 土壤外源钴对大麦根伸长的毒害及其预测模型[J]. 农业环境科学学报, 2020, 39(12): 2771-2778. |
[9] | 刘素萍. 石灰性土壤中钴的形态变化和钴对番茄生长发育、产量的影响[D]. 太谷: 山西农业大学, 2004. |
[10] | 罗丹, 胡欣欣, 郑海锋, 等. 钴对蔬菜毒害的临界值[J]. 生态学杂志, 2010, 29(6): 1114-1120. |
[11] | 王秀敏, 魏显有, 刘云惠, 等. 施用钴盐对玉米幼苗植株生长及钴含量的影响[J]. 河北农业大学学报, 1999, 22(2): 22-23. |
[12] | 邓冬冬. 上海某典型工业地块土壤中特征污染物铜、汞、钴重金属污染健康风险评价[J]. 土壤科学, 2022, 10(2): 91-100. |
[13] | 生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. |
[14] | 窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展[J]. 生态毒理学报, 2019, 14(4): 54-64. |
[15] | 董明明, 牟力言, 秦莉, 等. 物种敏感性分布法拟合函数的拟合优度评价[J]. 农业环境科学学报, 2021, 40(3): 544-551. |
[16] | 曾庆楠, 安毅, 秦莉, 等. 物种敏感性分布法在建立土壤生态阈值方面的研究进展[J]. 安全与环境学报, 2018, 18(3): 1220-1224. |
[17] | 罗晶晶, 吴凡, 张加文, 等. 我国土壤受试植物筛选与毒性预测[J]. 中国环境科学, 2022, 42(7): 3295-3305. |
[18] | 冯承莲, 付卫强, SCOTT D, 等. 种间关系预测(ICE)模型在水质基准研究中的应用[J]. 生态毒理学报, 2015, 10(1): 81-87. |
[19] | International Organization for Standardization. Soil quality - biological methods - determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes: ISO 14238: 2012[S]. Geneva: International Organization for Standardization, 2012. |
[20] | International Organization for Standardization. Soil quality - determination of the effects of pollutants on soil flora - part 1: method for the measurement of inhibition of root growth:ISO 11269-1: 2012[S]. Geneva: International Organization for Standardization, 2012. |
[21] | WANG X Q, WEI D P, MA Y B, et al. Soil ecological criteria for nickel as a function of soil properties[J]. Environmental Science and Pollution Research, 2018, 25(3): 2137-2146. |
[22] | 何俊, 田昕竹, 王学东, 等. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270. |
[23] | 王小庆, 李波, 韦东普, 等. 土壤中铜和镍的植物毒性预测模型的种间外推验证[J]. 生态毒理学报, 2013, 8(1): 77-84. |
[24] | WANG X Q, WEI D P, MA Y B, et al. Derivation of soil ecological criteria for copper in Chinese soils[J]. PLoS One, 2015, 10(7): e0133941. |
[25] | LI B, ZHANG H T, MA Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2011, 74(3): 459-466. |
[26] | BRILL J L, BELANGER S E, CHANEY J G, et al. Development of algal interspecies correlation estimation models for chemical hazard assessment[J]. Environmental Toxicology and Chemistry, 2016, 35(9): 2368-2378. |
[27] | BARRON M G, LAMBERT F N. Potential for interspecies toxicity estimation in soil invertebrates[J]. Toxics, 2021, 9(10): 265. |
[28] | MICÓ C, LI H F, ZHAO F J, et al. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils[J]. Environmental Pollution, 2008, 156(3): 883-890. |
[29] | LI H F, GRAY C, MICO C, et al. Phytotoxicity and bioavailability of cobalt to plants in a range of soils[J]. Chemosphere, 2009, 75(7): 979-986. |
[30] | 黄兴华, 李勖之, 王国庆, 等. 保护陆生生态的土壤铜环境基准研究[J]. 中国环境科学, 2022, 42(10): 4720-4730. |
[31] | QIN L Y, WANG M, ZHAO S W, et al. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112999. |
[32] | 王小庆, 韦东普, 黄占斌, 等. 物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J]. 农业环境科学学报, 2012, 31(1): 92-98. |
[33] | 李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报, 2015, 26(7): 2177-2182. |
[34] | ZHENG H, CHEN L, LI N, et al. Toxicity threshold of lead (Pb) to nitrifying microorganisms in soils determined by substrate-induced nitrification assay and prediction model[J]. Journal of Integrative Agriculture, 2017, 16(8): 1832-1840. |
[35] | QIN L Y, WANG L F, SUN X Y, et al. Ecological toxicity (ECx) of Pb and its prediction models in Chinese soils with different physiochemical properties[J]. Science of the Total Environment, 2022, 853: 158769. |
[36] | WAN Y N, JIANG B, WEI D P, et al. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110418. |
[37] | ZHAO S W, QIN L Y, WANG L F, et al. Ecological risk thresholds for Zn in Chinese soils[J]. Science of the Total Environment, 2022, 833: 155182. |
[38] | CRIEL P, LOCK K, VAN EECKHOUT H, et al. Influence of soil properties on copper toxicity for two soil invertebrates[J]. Environmental Toxicology and Chemistry, 2008, 27(8): 1748-1755. |
[39] | OORTS K, GHESQUIERE U, SWINNEN K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 836-844. |
[40] | 宋子杰, 赵龙, 党秀丽, 等. 土壤中三价锑的老化对秀丽隐杆线虫毒性的影响[J]. 环境科学研究, 2022, 35(9): 2195-2204. |
[41] | 蔡琼瑶, 徐俏, 周振, 等. 外源铅在4种土壤中的老化特征及对土壤化学性质的影响[J]. 环境科学学报, 2019, 39(3): 899-907. |
[42] | 林祥龙, 孙在金, 马瑾, 等. 土壤外源Sb(Ⅲ)的老化对其形态和跳虫(Folsomia candida)毒性的影响[J]. 生态毒理学报, 2017, 12(5): 153-160. |
[43] | OORTS K. Threshold calculation for metals in Soil. (2018.5.17)[2023.8.10]. https://arche-consulting.be/tools/threshold-calculator-for-metals-in-soil/ |
[44] | Canadian Council of Ministers of the Environment. A protocol for the derivation of environmental and human health soil quality guidelines[R]. Winnipeg: CCME, 2006. |
[45] | 郑丽萍, 王国庆, 龙涛, 等. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 2018, 13(6): 39-49. |
[46] | SWARTJES F A, RUTGERS M, LIJZEN J P A, et al. State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools[J]. Science of the Total Environment, 2012, 427/428: 1-10. |
[47] | United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[3] | ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region [J]. Earth Science Frontiers, 2024, 31(4): 354-365. |
[4] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[5] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[6] | TU Chunlin, HE Chengzhong, MA Yiqi, YIN Linhu, TAO Lanchu, YANG Minghua. Pollution Characteristics, Ecological risk and source apportionment of heavy metals in sediments of the Pearl River Basin [J]. Earth Science Frontiers, 2024, 31(3): 410-419. |
[7] | LIU Hai, WEI Wei, SONG Yang, PAN Yang, LI Yingchun. Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County [J]. Earth Science Frontiers, 2024, 31(3): 420-431. |
[8] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[9] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[10] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[11] | SUN Xiaoyi, WANG Meng, QIN Luyao, YU Lei, WANG Jing, CHEN Shibao. Toxicity thresholds (ECx) for Cr in soils and prediction models [J]. Earth Science Frontiers, 2024, 31(2): 121-129. |
[12] | DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China [J]. Earth Science Frontiers, 2024, 31(2): 130-136. |
[13] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[14] | LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods [J]. Earth Science Frontiers, 2024, 31(2): 183-195. |
[15] | LIU Yongbing, SU Junjie, GUO Wei, WANG Yingnan, YIN Yaqiu. Comparative study on soil remediation of slope-alluvial contaminated arable land in granite areas, northern Hebei Province [J]. Earth Science Frontiers, 2024, 31(2): 196-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||