Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 121-129.DOI: 10.13745/j.esf.sf.2023.11.55
Previous Articles Next Articles
SUN Xiaoyi(), WANG Meng*(
), QIN Luyao, YU Lei, WANG Jing, CHEN Shibao
Received:
2023-10-31
Revised:
2023-11-14
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
SUN Xiaoyi, WANG Meng, QIN Luyao, YU Lei, WANG Jing, CHEN Shibao. Toxicity thresholds (ECx) for Cr in soils and prediction models[J]. Earth Science Frontiers, 2024, 31(2): 121-129.
土壤地点 | 土壤类型 | pH | 土壤CEC/ (cmol·kg-1) | OC含量/% | 黏土含量/% | 总Cr含量/ (mg·kg-1) | |
---|---|---|---|---|---|---|---|
海口(HK) | 20°02'45.97″N, 110°11'38.39″E | 砖红壤 | 4.93 | 8.75 | 1.51 | 23.00 | 48.21 |
桂林(GL) | 25°27'35.66″N, 110°29'01.94″E | 红壤 | 5.75 | 18.65 | 3.24 | 27.80 | 74.52 |
衡阳(HY) | 26°89'32.31″N, 112°57'19.97″E | 红壤 | 6.64 | 16.59 | 2.82 | 28.20 | 77.94 |
嘉兴(JX) | 30°74'61.29″N, 120°75'54.86″E | 水稻土 | 6.72 | 20.65 | 3.46 | 38.90 | 75.53 |
新乡(XX) | 35°18'13.71″N, 113°55'15.05″E | 潮土 | 7.30 | 12.82 | 1.05 | 15.80 | 61.38 |
保定(BD) | 38°87'38.91″N, 115°46'48.15″E | 潮土 | 8.15 | 9.52 | 1.21 | 20.63 | 54.59 |
德州(DZ) | 37°16'53.14″N, 116°43'40.56″E | 潮土 | 8.90 | 8.33 | 0.69 | 12.00 | 49.46 |
Table 1 Soil properties of the seven soil types tested
土壤地点 | 土壤类型 | pH | 土壤CEC/ (cmol·kg-1) | OC含量/% | 黏土含量/% | 总Cr含量/ (mg·kg-1) | |
---|---|---|---|---|---|---|---|
海口(HK) | 20°02'45.97″N, 110°11'38.39″E | 砖红壤 | 4.93 | 8.75 | 1.51 | 23.00 | 48.21 |
桂林(GL) | 25°27'35.66″N, 110°29'01.94″E | 红壤 | 5.75 | 18.65 | 3.24 | 27.80 | 74.52 |
衡阳(HY) | 26°89'32.31″N, 112°57'19.97″E | 红壤 | 6.64 | 16.59 | 2.82 | 28.20 | 77.94 |
嘉兴(JX) | 30°74'61.29″N, 120°75'54.86″E | 水稻土 | 6.72 | 20.65 | 3.46 | 38.90 | 75.53 |
新乡(XX) | 35°18'13.71″N, 113°55'15.05″E | 潮土 | 7.30 | 12.82 | 1.05 | 15.80 | 61.38 |
保定(BD) | 38°87'38.91″N, 115°46'48.15″E | 潮土 | 8.15 | 9.52 | 1.21 | 20.63 | 54.59 |
德州(DZ) | 37°16'53.14″N, 116°43'40.56″E | 潮土 | 8.90 | 8.33 | 0.69 | 12.00 | 49.46 |
土壤 地点 | 蚯蚓 | 小白菜 | SIR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EC10/(mg·kg-1) | EC50/(mg·kg-1) | EC10/(mg·kg-1) | EC50/(mg·kg-1) | EC10/(mg·kg-1) | EC50/(mg·kg-1) | ||||||
HK | 65.0 | 103.9 | 82.1 | 159.9 | 22.1 | 50.3 | |||||
(39.2~71.5) | (88.5~119.5) | (50.1~96.3) | (149.2~171.3) | (11.8~34.8) | (38.0~62.7) | ||||||
GL | 85.9 | 187.9 | 126.6 | 261.2 | 42.0 | 74.9 | |||||
(52.8~133.9) | (168.1~209.9) | (72.0~195.5) | (216.1~315.6) | (20.3~68.3) | (60.2~102.4) | ||||||
HY | 109.2 | 171.5 | 133.3 | 294.3 | 47.0 | 83.0 | |||||
(78.0~152.8) | (150.6~207.4) | (79.0~199.9) | (245.8~352.5) | (22.0~79.1) | (63.5~127.1) | ||||||
JX | 107.1 | 259.3 | 173.8 | 321.8 | 53.7 | 92.4 | |||||
(70.5~187.1) | (225.4~298.3) | (95.8~223.5) | (270.9~382.3) | (36.9~78.1) | (72.3~117.0) | ||||||
XX | 85.1 | 253.3 | 105.0 | 302.4 | 36.0 | 81.2 | |||||
(48.0~124.6) | (159.7~281.2) | (67.0~143.3) | (175.5~333.4) | (25.0~51.8) | (67.8~97.2) | ||||||
BD | 137.2 | 369.0 | 220.2 | 441.9 | 42.7 | 103.7 | |||||
(65.8~193.5) | (345.8~496.0) | (81.4~277.4) | (203.7~487.3) | (25.3~72.1) | (65.5~122.8) | ||||||
DZ | 122.4 | 267.8 | 189.0 | 367.9 | 37.1 | 79.9 | |||||
(60.7~196.0) | (198.2~338.3) | (64.0~223.8) | (143.7~396.1) | (21.5~64.3) | (54.2~96.3) |
Table 2 Effective concentration (ECx, mg/kg) values of Cr under different soil types
土壤 地点 | 蚯蚓 | 小白菜 | SIR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EC10/(mg·kg-1) | EC50/(mg·kg-1) | EC10/(mg·kg-1) | EC50/(mg·kg-1) | EC10/(mg·kg-1) | EC50/(mg·kg-1) | ||||||
HK | 65.0 | 103.9 | 82.1 | 159.9 | 22.1 | 50.3 | |||||
(39.2~71.5) | (88.5~119.5) | (50.1~96.3) | (149.2~171.3) | (11.8~34.8) | (38.0~62.7) | ||||||
GL | 85.9 | 187.9 | 126.6 | 261.2 | 42.0 | 74.9 | |||||
(52.8~133.9) | (168.1~209.9) | (72.0~195.5) | (216.1~315.6) | (20.3~68.3) | (60.2~102.4) | ||||||
HY | 109.2 | 171.5 | 133.3 | 294.3 | 47.0 | 83.0 | |||||
(78.0~152.8) | (150.6~207.4) | (79.0~199.9) | (245.8~352.5) | (22.0~79.1) | (63.5~127.1) | ||||||
JX | 107.1 | 259.3 | 173.8 | 321.8 | 53.7 | 92.4 | |||||
(70.5~187.1) | (225.4~298.3) | (95.8~223.5) | (270.9~382.3) | (36.9~78.1) | (72.3~117.0) | ||||||
XX | 85.1 | 253.3 | 105.0 | 302.4 | 36.0 | 81.2 | |||||
(48.0~124.6) | (159.7~281.2) | (67.0~143.3) | (175.5~333.4) | (25.0~51.8) | (67.8~97.2) | ||||||
BD | 137.2 | 369.0 | 220.2 | 441.9 | 42.7 | 103.7 | |||||
(65.8~193.5) | (345.8~496.0) | (81.4~277.4) | (203.7~487.3) | (25.3~72.1) | (65.5~122.8) | ||||||
DZ | 122.4 | 267.8 | 189.0 | 367.9 | 37.1 | 79.9 | |||||
(60.7~196.0) | (198.2~338.3) | (64.0~223.8) | (143.7~396.1) | (21.5~64.3) | (54.2~96.3) |
土壤地点 | 蚯蚓 | 小白菜 | SIR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr*含量/(mg·kg-1) | 效应/% | Cr含量/(mg·kg-1) | 效应/% | Cr含量/(mg·kg-1) | 效应/% | ||||||
HK | |||||||||||
GL | 102.4 | 104 | 105.2 | 105 | |||||||
HY | 98.1 | 103 | 102.8 | 108 | 89.4 | 102 | |||||
JX | 98.7 | 108 | 99.6 | 112 | 87.6 | 104 | |||||
XX | 96.8 | 105 | |||||||||
BD | 106.3 | 102 | 95.9 | 106 | |||||||
DZ |
Table 3 Chromium(VI)-induced hormesis in different species under different soil types
土壤地点 | 蚯蚓 | 小白菜 | SIR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr*含量/(mg·kg-1) | 效应/% | Cr含量/(mg·kg-1) | 效应/% | Cr含量/(mg·kg-1) | 效应/% | ||||||
HK | |||||||||||
GL | 102.4 | 104 | 105.2 | 105 | |||||||
HY | 98.1 | 103 | 102.8 | 108 | 89.4 | 102 | |||||
JX | 98.7 | 108 | 99.6 | 112 | 87.6 | 104 | |||||
XX | 96.8 | 105 | |||||||||
BD | 106.3 | 102 | 95.9 | 106 | |||||||
DZ |
物种 | 回归方程 | R2 |
---|---|---|
蚯蚓 | lgEC10=0.924+0.358 lgpH+0.671 lgCEC | 0.761* |
lgE | 0.849** | |
lgEC50=1.037+0.439 lgpH+0.747 lg [w(OC)/%] | 0.702* | |
lgEC50=1.161-0.934 lgpH+0.170 lgCEC+0.444 lg [w(OC)/%] | 0.832* | |
lgEC50=0.561+0.845 lgpH+0.342 lgCEC+0.086 lg [w(OC)/%]+0.420 lg [w(Clay)/%] | 0.864** | |
小白菜 | lgE | 0.655* |
lgE | 0.799* | |
lgEC10=1.023+0.833 lgpH+0.833 lg [w(Clay)/%]+0.197 lg [w(OC)/%] | 0.815* | |
lgEC50=1.333+0.341 lgpH+0.670 lgCEC | 0.615* | |
lgEC50=1.474+0.905 lgpH+0.013 lgCEC+0.506 lg [w(OC)/%] | 0.795* | |
SIR | lgEC10=0.489+1.120 lgpH+0.572 lg [w(OC)/%] | 0.750* |
lgE | 0.860* | |
lgEC50=0.926+1.021 lgpH+0.533 lg [w(OC)/%] | 0.726* | |
lgEC50=0.461+0.579 lgpH+0.692 lgCEC+0.141 lg [w(Clay)/%] | 0.853** | |
lgEC50=0.668+0.628 lgpH+0.611 lgCEC+0.138 lg [w(OC)/%] | 0.852** |
Table 4 Linear regression relationship between ECx values (Cr) and soil properties based on different toxicity endpoints
物种 | 回归方程 | R2 |
---|---|---|
蚯蚓 | lgEC10=0.924+0.358 lgpH+0.671 lgCEC | 0.761* |
lgE | 0.849** | |
lgEC50=1.037+0.439 lgpH+0.747 lg [w(OC)/%] | 0.702* | |
lgEC50=1.161-0.934 lgpH+0.170 lgCEC+0.444 lg [w(OC)/%] | 0.832* | |
lgEC50=0.561+0.845 lgpH+0.342 lgCEC+0.086 lg [w(OC)/%]+0.420 lg [w(Clay)/%] | 0.864** | |
小白菜 | lgE | 0.655* |
lgE | 0.799* | |
lgEC10=1.023+0.833 lgpH+0.833 lg [w(Clay)/%]+0.197 lg [w(OC)/%] | 0.815* | |
lgEC50=1.333+0.341 lgpH+0.670 lgCEC | 0.615* | |
lgEC50=1.474+0.905 lgpH+0.013 lgCEC+0.506 lg [w(OC)/%] | 0.795* | |
SIR | lgEC10=0.489+1.120 lgpH+0.572 lg [w(OC)/%] | 0.750* |
lgE | 0.860* | |
lgEC50=0.926+1.021 lgpH+0.533 lg [w(OC)/%] | 0.726* | |
lgEC50=0.461+0.579 lgpH+0.692 lgCEC+0.141 lg [w(Clay)/%] | 0.853** | |
lgEC50=0.668+0.628 lgpH+0.611 lgCEC+0.138 lg [w(OC)/%] | 0.852** |
[1] | SINGH D, SHARMA N, SINGH C K, et al. Chromium (VI)-induced alterations in physio-chemical parameters, yield, and yield characteristics in two cultivars of mungbean (Vigna radiata L.)[J]. Frontiers in plant science, 2021, 12: 735129. |
[2] | LARSEN K K, WIELANDT D, SCHILLER M, et al. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443: 162-174. |
[3] | DE FLORA S, BAGNASCO M, SERRA D, et al. Genotoxicity of chromium compounds. A review[J]. Mutation Research/Reviews in Genetic Toxicology, 1990, 238(2): 99-172. |
[4] | ASHRAF A, BIBI I, NIAZI N K, et al. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J]. International Journal of Phytoremediation, 2017, 19(7): 605-613. |
[5] | SAHA R, NANDI R, SAHA B. Sources and toxicity of hexavalent chromium[J]. Journal of Coordination Chemistry, 2011, 64(10): 1782-1806. |
[6] | SPEIR T W, KETTLES H A, PARSHOTAM A, et al. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties[J]. Soil Biology and Biochemistry, 1995, 27(6): 801-810. |
[7] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. |
[8] | ZHANG X, ZHANG X, LI L, et al. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time[J]. Environmental Research, 2022, 204: 111941. |
[9] | HAANSTRA L, DOELMAN P, VOSHAAR J H O. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2): 293-297. |
[10] | 李泽姣, 崔岩山, 蔡晓琳, 等. 土壤铬污染对赤子爱胜蚓抗氧化酶活性的影响[J]. 中国科学院大学学报, 2020, 37(1): 20-26. |
[11] | 王晓南, 刘征涛, 王婉华, 等. 重金属铬(Ⅵ)的生态毒性及其土壤环境基准[J]. 环境科学, 2014, 35(8): 3155-3161. |
[12] | EZE M O, GEORGE S C, HOSE G C. Dose-response analysis of diesel fuel phytotoxicity on selected plant species[J]. Chemosphere, 2021, 263: 128382. |
[13] | GILLER K E, WITTER E, MCGRATH S P. Heavy metals and soil microbes[J]. Soil Biology and Biochemistry, 2009, 41(10): 2031-2037. |
[14] | OORTS K, BRONCKAERS H, SMOLDERS E. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 845-853. |
[15] | CHEN S, MENG W, LI S, et al. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 765-774. |
[16] | AMIN H, ARAIN B A, AMIN F, et al. Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L[J]. American Journal of Plant Sciences, 2013, 4(12): 2431-2439. |
[17] | 王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6): 2028-2037. |
[18] | KUPERMAN R G, SICILIANO S D, RÖMBKE J, et al. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes[J]. Integrated environmental assessment and management, 2014, 10(3): 388-400. |
[19] | BERRY R III, LÓPEZ-MARTÍNEZ G. A dose of experimental hormesis: when mild stress protects and improves animal performance[J]. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2020, 242: 110658. |
[20] | BELZ R G, DUKE S O. Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example[J]. Current Opinion in Toxicology, 2022, 29: 36-42. |
[21] | PATNAIK A R, ACHARY V M M, PANDA B B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L[J]. Plant Growth Regulation, 2013, 71: 157-170. |
[22] | MORKUNAS I, WOŹNIAK A, MAI V C, et al. The role of heavy metals in plant response to biotic stress[J]. Molecules, 2018, 23(9): 2320. |
[23] | UDDIN I, BANO A, MASOOD S. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 271-278. |
[24] | TALEBI M, TABATABAEI B E S, AKBARZADEH H. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes[J]. Chemosphere, 2019, 230: 488-497. |
[25] | CALABRESE E J, AGATHOKLEOUS E, KOZUMBO W J, et al. Estimating the range of the maximum hormetic stimulatory response[J]. Environmental Research, 2019, 170: 337-343. |
[26] | ZHANG X X, LIN Z F. Hormesis-induced gap between the guidelines and reality in ecological risk assessment[J]. Chemosphere, 2020, 243: 125348. |
[27] | JARDINE P M, STEWART M A, BARNETT M O, et al. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility[J]. Environmental Science and Technology, 2013, 47(19): 11241-11248. |
[28] | LIN X L, SUN Z J, ZHAO L, et al. Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J]. Chemosphere, 2019, 224: 734-742. |
[29] | LI B R, LIAO P, XIE L, et al. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments[J]. Water Research, 2020, 181: 115923. |
[30] | 马虹, 王学东, 李金瓶, 等. 土壤理化性质对外源六价铬植物毒性的影响[J]. 生态毒理学报, 2021, 16(4)224-232. |
[31] | ALYAZOURI A, JEWSBURY R, TAYIM H, et al. Uptake of chromium by Portulaca oleracea from soil: effects of organic content, pH, and sulphate concentration[J]. Applied and Environmental Soil Science, 2020, 2020: 1-10. |
[32] | LOYAUX-LAWNICZAK S, LECOMTE P, EHRHARDT J J. Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils[J]. Environmental Science and Technology, 2001, 35(7): 1350-1357. |
[1] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[2] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[3] | WANG Xiangli, WEI Wei. Stable chromium isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 78-103. |
[4] | CHEN Shi-Zhong YANG Jing-Rui. A possible new chromium mineralization: A discussion on the formation of chromespinel of Gangshang ultramafic rocks in Sulu UHP belt. [J]. Earth Science Frontiers, 2009, 16(5): 232-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||